a2 United States Patent

Greiner et al.

US009459872B2

US 9,459,872 B2
*QOct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

HIGH-WORD FACILITY FOR EXTENDING
THE NUMBER OF GENERAL PURPOSE
REGISTERS AVAILABLE TO
INSTRUCTIONS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Dan F Greiner, San Jose, CA (US);
Marcel Mitran, Markham (CA);
Timothy J Slegel, Staatsburg, NY (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/726,787
Filed: Dec. 26, 2012

Prior Publication Data

US 2013/0117545 Al May 9, 2013

Related U.S. Application Data

Continuation of application No. 12/820,735, filed on
Jun. 22, 2010.

Int. CL.

GO6F 9/30 (2006.01)

GO6F 9/32 (2006.01)

GO6F 9/34 (2006.01)

U.S. CL

CPC GO6F 9/3012 (2013.01); GOGF 9/30098

(2013.01); GOGF 930105 (2013.01); GO6F
9/30138 (2013.01); GO6F 9/30145 (2013.01);
GO6F 9/30167 (2013.01);

(Continued)

Execution Unit

(58) Field of Classification Search
CPC ... GO6F 9/30105; GOG6F 9/30098; GO6F
9/3012; GO6F 9/30138; GOGF 9/30145;
GOG6F 9/3019
USPC ottt 712/220
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,551,013 A 8/1996 Beausoleil et al.
5,574,873 A 11/1996 Davidian
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1226325 8/1999
EP 1462931 9/2004
(Continued)

OTHER PUBLICATIONS

IBM z/Architecture Principles of Operation, 8th Edition, Feb. 2009,
SA22-7832-07.

(Continued)

Primary Examiner — Benjamin Geib
(74) Attorney, Agent, or Firm — William A. Kinnaman,
Jr.

&7

A computer employs a set of General Purpose Registers
(GPRs). Each GPR comprises a plurality of portions. Pro-
grams such as an Operating System and Applications oper-
ating in a Large GPR mode, access the full GPR, however
programs such as Applications operating in Small GPR
mode, only have access to a portion at a time. Instruction
Opcodes, in Small GPR mode, may determine which portion
is accessed.

ABSTRACT

19 Claims, 18 Drawing Sheets

\‘-\ | Decode/Dispatchi

........... e

\\ 310

US 9,459,872 B2

Page 2
(52) U.S.CL P 7084839 3/1995
CPC GOG6F 9/30189 (2013.01); GOGF 9/322 TP 2001501001 1/2001
(2013.01); GO6F 9/342 (2013.01) P 2004506263 2/2004
Jp 2004355597 12/2004
(56) References Cited Jp 2006012163 1/2006
KR 20000048531 Al 7/2000
U.S. PATENT DOCUMENTS KR 20030024850 Al 3/2003
WO WO 98/12627 3/1998

5,751,614 A * 5/1998 Cohenc..cceceevnenene 708/231 WO WO0213005 Al 2/2002

5,790,825 A 8/1998 Traut

5,838,960 A 11/1998 Harriman, Jr.

5881259 A 3/1999 Glass OTHER PUBLICATIONS

6,009,261 A 12/1999 Scalzi et al.

6,308,255 Bl 10/2001 Gorishek, IV et al. International Search Report and Written Opinion mailed Feb. 1,

6,343,356 Bl 1/2002 Pechancek et al. 2011, PCT/EP2010/067048.

6,463,582 Bl 10/2002 Lethin et al. USPTO U.S. Appl. No. 12/820,735, filed Jun. 22, 2010 to Greiner

6,877,084 B1* 4/2005 Christie 712/203 et al, Office Action dated Jan. 3, 2014.

72092 B 1%88; gl‘l‘?ﬁ‘gflﬁr et al. USPTO U.S. Appl. No. 12/820,735, filed Jun. 22, 2010 to Greiner

7’739’480 B2 6/2010 Liao et al.' et al, Office Action dated Sep. 14, 2013.

7:840:783 Bl 11/2010 Singh et al. Intel M80C286 High Performance CHMOS Microprocessor with

7,877,582 B2* 1/2011 Gschwind et al. 712/226 Memory Management and Protection, Feb. 1990.

8,386,754 B2* 2/2013 Blas_C(_) Allue et al. 712/216 Steve Furber, Revision: ARM Processor, CQ Publishing Co., Itd,

8,438,340 B2~ 5/2013 Bohizic et al. Dec. 18, 2001, 1st Edition pp. 41-45; 187-189, 183-175; Abstract

8,694,758 B2* 4/2014 Orens_tlen etal. ... 712/229 Only.

S530.000 B2 92044 Jaccbietal, Zilog, 78000 Data Manual, CQ Publishing Co. Ltd, 1980 First
2009/0249039 Al 10/2009 Hook et al. Edition p. 26-47. _ _
2010/0100692 Al 4/2010 Mitran et al. Intel Corporation Software Developer’s Manual Basic Architecture;
2011/0202748 Al 8/2011 Jacobi et al. CQ Publishing Co., Ltd, 1987, pp. 2-1 through 2-3.
2013/0117546 Al 5/2013 Jacobi et al.

FOREIGN PATENT DOCUMENTS

JP

05204635
06051981

8/1993
2/1994

IBM z/Architecture Principles of Operation SA22-7832-06, 7th
Edition, Feb. 2008, pp. 2-3; 2-4; 5-8 through 5-9; 7-202 through
7-203.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 18 US 9,459,872 B2

Host Computer
50
1
-
Processor (CPU)
3
\ 7”’ 7
DAT
// address
TLB
P 5
LOAD/
STORE UNIT
2
4 v V /
INSTRUCTION |
FETCH UNIT T CACHE COMPUTER
4 . MEMORY
= 7L
INSTRUCTION | (MAIN
DECODE UNIT 9 STORE)
P 8
INSTRUCTION
- {EXECUTION e
1 UNIT
/ S
Z
: =
Media :; 11 Ne

U.S. Patent Oct. 4, 2016 Sheet 2 of 18 US 9,459,872 B2

Emulated (Virtual)
Host Computer Memory

A

58
oy
el
-
Computer
Memaory
(Host)
A
1
P
vvvonoovmv«m\et\v@oo\\’ 00000 CPOOC RN A RANAAAAANAARAANR AN ST DN S BOOBREEAREAAANAARAANNDA AT R EEE HRTOCO RS RN

Emulated (Virtual)

Processor (CPU) 23

Emulation
Routines

o,
J,

Frocessor
Native
instruction Set
Architecture 'B'

B L T D L UV PP YY)

e e R e L L T T ST

R AN GG P IO P TN ORI R ARAARARAAARNAANANA NN U R VG VNI VP RV VN VUMY BB P R U RO RN NAAGRAAAN AR A O N W T RN R R I ARV AR AN
RlN

FiG, 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 18 US 9,459,872 B2

Operating System 112
Application 1— |

Application 2
Application 3
RN
102 Base Compéter 101
105 |

Display I\ || Memory = 106,
] TN\107
\ S s

Mouse | Processor Storage
' , fm r | Mediag
103 >

Keyboard Printer/Scanner
. AN
\>04 \\110 108

09

(ot

Network

100

U.S. Patent Oct. 4, 2016 Sheet 4 of 18 US 9,459,872 B2

Remote

207
ternet

=

RS

Client1 Client 2 Client 4

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet 5 of 18 US 9,459,872 B2

Hrocessor | Caches 303

ngmm Counter | ,30‘5

106 | 311 HSiiUL’imﬂ Fetchf E\
S 3{}5‘* - o

D@m{ s/Ds%patc‘h_ -+Load/Store Unit
310

3
kY
i

/
- xea:utsf:m} |Bramh ‘?’,98/"
X

Unit Unit I
E i/ DAT |

E
f egzazers (

VO Units

304

1%
2
£

U.S. Patent Oct. 4, 2016 Sheet 6 of 18 US 9,459,872 B2

Fxecution Unit 30_;7\

R .
: L
| A

QOiher if: N
401 / \ 306

i \\ R ‘
% ¢ H
....... [5 e ispatchi
| . 509 \ {D code/Di Jpgtch[
5 Registers 3
X\
\ 310

!
\

Load/Store Unit

U.S. Patent Oct. 4, 2016 Sheet 7 of 18 US 9,459,872 B2

b el ey
r ; - __{NJ
428 g

/ / N
/ { .
f N
; { N
/ / N
/ AN

QOther i \
425 N\ 306

!
!
i

. Decode/Dispatch
1309 ; i

Registers E

1t
i
Ll
“nd

U.S. Patent Oct. 4, 2016 Sheet 8 of 18 US 9,459,872 B2

Load/Store Unit 18

460 ! (:‘TLI‘
b w% f—
S L e T v
4597 N\ /N7 M8
“‘5 1‘{“.[.} ”ﬂ\

t LU ! A Ve !
H N, y
) D
e : -
§ \‘\\ \:\
{
z"f / \\,\ \
K f \ \4
,/ i \\ N,
4 : \ N,
Other , \ AN
\ \

\ | Decode/Dispatch

Registers f \

\ 303

Cache/Memory
interface

FiG. §

U.S. Patent

502

n
<
i

L5
[
~}

B Foimat

Oct. 4, 2016 Sheet 9 of 18 US 9,459,872 B2

U Code

i3]

{ Fosrmed

Up Gade

Qs Conde

it

B

RIE Format

R ~ £ LT IR
'\\)i"? §\1§\35\15(~?

—
o

7] Gp Gade

B

Hy TR,

B Formsg

O ol

e fopCd 306

-
i

U.S. Patent

510

511

516

,.
A
i

Oct. 4, 2016

B Format

Sheet 10 of 18

O Code

i 3

HRE

oot

1

US 9,459,872 B2

\’fl {de Floivii -RT H)
a 18 o oo

o

Op Cogde

3 1 an 24 (L
Oy Code b, R, R,
i 16 4 ;™®dh

O Conde

My

HEE Format

@ 18 L 4 O

15

U.S. Patent

Oct. 4, 2016

Sheet 11 of 18

e Formst

US 9,459,872 B2

mlade i Ny LR) }
- IV i by 3 =
520 -
4 1 1 a3t
HEL Formad
Oy Cods L o Y P T
{'32 ‘i l} ot \,3‘,{ L?» E:.‘} L}.} FEarr i \(‘]P {,_u_j-_jq:f
i 3 id 1" Pk ik i {2
REY Forrmat
599 ‘»t'f! Lo {{1 F?, B) 8l : i H
a 5 ! T 2 a0 a7
gon | Op Gode | Fy B, | B Dl DH: | Op Cods
3 3 1é it 2 e Aix A7
F Forrniat
o A 1z 1 20 1

Rl Formmad

. On Gade | H
35 IS TR L %{3

{1 FEEiE

X Formet

My

Cp G

T3
=

a g 12 B i P A a7
FOCY Foimat

927 | Oplade | Hy X LD, L, D, | Op Code
3 4 S DR su A &

FiG. 11

U.S. Patent Oct. 4, 2016 Sheet 12 of 18 US 9,459,872 B2

N (L ok
M Formnat
1
{_‘}:3; '§ i AL {‘ j N Ef;a F\t. [’1
! 2
' 3 138 o 43
SPY Fogmad
o |dpladel b | UL, OH, | Op Code
] Y 3 ¥ 3% it 37

3 & i Q) K {t 47

83 g dplode | L) LB 8 B, I,
! 3 12 & s 3% R 47

535 (Uplade | L |4 1B, 3, B, L1,
¢ d [i el @ 97

538 GpGode | By LRy B, L E“ B
' 3 Wwooow ¢ S 7

i % ~ .

K37 LR B Lo by L

H Ay 1 g iy 1y W% ¥

FIG. 12

U.S. Patent Oct. 4, 2016 Sheet 13 of 18 US 9,459,872 B2

SSE Format

Qi Gk B, XS B, &

«d [N Lt R 3 b

S5F Foomad

S42] [0y Gade | By piptd) B 4 B. £,
{
b

= 3 tz e 28 R 36 A7

FIG. 13

U.S. Patent Oct. 4, 2016 Sheet 14 of 18 US 9,459,872 B2

g

551 |

o
L
P

T

e Li ffff ;f M% {fff{}p ggﬁg

i S e & 0 T ; F e Taede
85¢ VP Lo Ry R, 4 M, V74 AUp Tnde
oo 5 {7 s SV I 37

o
&n
£

[)]
Lh
o

Op oty By VR, T L L. |0p Code

t B SO A 24 o i 47

iy [y i, Op Code

(631

ors

o1

v —
ey
7

s

-

P

STL Format

Op Code & {3 I.

55

5
&3]

U.S. Patent Oct. 4, 2016 Sheet 15 of 18 US 9,459,872 B2

B Lag& GPR e
e Small GPR B B
0 HighWord 31132 (pwwWord 683

GPR O

A T B e e s R s s e r oot st avat

Small GPR]

GPR 15| SN

Lage {:‘;PP\ N‘_{ ;
: |
i | |

./’;
. HighwWord
L YIN

US 9,459,872 B2

U.S. Patent Oct. 4, 2016 Sheet 16 of 18
701 710

. R l S

‘ . . Fetch an 1 Fetch an .

| n{;it‘r;}oai::m of g Instruction of § Instruction of |

E 2 Firet Set ‘ { a Second Set | a Third Set

703 N T 704
e top Y
] :i ggz;; lé ;rp N For Instructions of the;
. moda? g ‘- 9 Third Set, Directing
IS T Al Access to the Large GPR
Yes .~ comprising the first portion
7 5 S and the second portion

‘*hcs} ~Wmd \
\ Instruction? No

For Instructions of the
sacond Sef, Direct Access
to instruction Specified

é 707

For Instructions of the
First Set, Directing Access
to only first portion of

second portion of Large Large GPR
GPR “
7
y ye |
\ d e i
\\.\\ ‘&// 1
| A A & 709
N | Access GPR for Cperand | ¥
LA o addrjess of Operand in | Generate Operation
N Memary || Exception for

FiG. 16

instructions of the
Second Set if
High-Word Facility not
installed

U.S. Patent Oct. 4, 2016
, *“\\\
A
i
)
{
/
Ii(
781 §
, N
\”\

/ Determine \
i nstruction |
. specific |
L function to be/
\\ performed

Sl

Sheet 17 of 18

Small GPR, based on the QpCode,
performing an ADD or a Compare
operation on the two operands and
storing the result in @ Small GPR.

»»»»»» 783

memaory

Based on the OpCode, performing
a Load of an operand from memory
to a Small GPR or a Store of an
operand from a Small GPR to

US 9,459,872 B2

rotating an operand of a Small GPR
oy an instruction specified amount
and inserting a selected portion of
ihe rotated operand in a selected
portion of a target operand of the
Small GPH

754

ol

G,

US 9,459,872 B2

U.S. Patent Oct. 4,2016 Sheet 18 of 18
601
804 Operating
VA System (O8)
[Intiate \ - T in Large GPR

| Context L&
\ Switch

mode {64 bit

Y / 4 GPRs)
SN LS .
o P A
Save State NNl .. 802
Information for N N Application
Current Program 5\ \.\ Program #1
such as Large A in Small GPR
GPRs, Program N rnode (32 hit
Counter, § 3PRs)
Condition Codes A
, N
\

! Obtain State j ,

| saved State | S0 803

i information for SN

! next program | \ Applicaiton

| < | o \| Program #2

kY / - \ in Large GPR

~ N .
/ Start Executing N .-
¢ .

Y next program as \

i the new Current

mode (64 bit
GPRs)

(Program at
v Obtained
i

A ™

. Program Counter /
\ Address

FiG. 18

US 9,459,872 B2

1
HIGH-WORD FACILITY FOR EXTENDING
THE NUMBER OF GENERAL PURPOSE
REGISTERS AVAILABLE TO
INSTRUCTIONS

CROSS-REFERENCE TO RELATED
APPLICATION

This is a Continuation Application of U.S. patent appli-
cation Ser. No. 12/820,735 “HIGH-WORD FACILITY FOR EXTENDING
THE NUMBER OF GENERAL PURPOSE REGISTERS AVAILABLE TO INSTRUC-
tions”, Filed Jun. 22, 2010, which application is incorpo-
rated herein by reference.

FIELD OF THE INVENTION

The present invention is related to computer systems and
more particularly to computer system processor instruction
functionality.

BACKGROUND

Trademarks: IBM® is a registered trademark of Interna-
tional Business Machines Corporation, Armonk, N.Y.,
U.S.A. S/390, 72900, z990 and z10 and other product names
may be registered trademarks or product names of Interna-
tional Business Machines Corporation or other companies.

IBM has created through the work of many highly tal-
ented engineers beginning with machines known as the
IBM® System 360 in the 1960s to the present, a special
architecture which, because of its essential nature to a
computing system, became known as “the mainframe”
whose principles of operation state the architecture of the
machine by describing the instructions which may he
executed upon the “mainframe” implementation of the
instructions which had been invented by IBM inventors and
adopted, because of their significant contribution to improv-
ing the state of the computing machine represented by “the
mainframe”, as significant contributions by inclusion in
IBM’s Principles of Operation as stated over the years. The
Eighth Edition of the IBM® z/Architecture® Principles of
Operation which was published February, 2009 has become
the standard published reference as SA22-7832-07 and is
incorporated in IBM’s z10® mainframe servers including
the IBM System z10® Enterprise Class servers. The IBM
Z/Architecture® Principles of Operation, Publication SA22-
7832-07 is incorporated by reference in its entirety herein.

Referring to FIG. 1, representative components of a Host
Computer system 50 are portrayed. Other arrangements of
components may also he employed in a computer system,
which are well known in the art. The representative Host
Computer 50 comprises one or more CPUs 1 in communi-
cation with main store (Compute Memory 2) as well as [/O
interfaces to storage devices 11 and networks 10 for com-
municating with other computers or SANs and the like. The
CPU 1 is compliant with an architecture having an archi-
tected instruction set and architected functionality. The CPU
1 may have Dynamic Address Translation (DAT) 3 for
transforming program addresses (virtual addresses) into real
address of memory. A DAT typically includes a Translation
Lookaside Buffer (TLLB) 7 for caching translations so that
later accesses to the block of computer memory 2 do not
require the delay of address translation. Typically a cache 9
is employed between Computer Memory 2 and the Proces-
sor 1. The cache 9 may be hierarchical having a large cache
available to more than one CPU and smaller, faster (lower
level) caches between the large cache and each CPU. In

10

15

20

25

30

35

40

45

50

55

60

65

2

some implementations the lower level caches are split to
provide separate low level caches for instruction fetching
and data accesses. In an embodiment, an instruction is
fetched from memory 2 by an instruction fetch unit 4 via a
cache 9. The instruction is decoded in an instruction decode
unit (6) and dispatched (with other instructions in some
embodiments) to instruction execution units 8. Typically
several execution units 8 are employed, for example an
arithmetic execution unit, a floating point execution unit and
a branch instruction execution unit. The instruction is
executed by the execution unit, accessing operands from
instruction specified registers or memory as needed. If an
operand is to be accessed (loaded or stored) from memory 2,
a load store unit 5 typically handles the access under control
of the instruction being executed. Instructions may be
executed in hardware circuits or in internal microcode
(firmware) or by a combination of both.

In FIG. 2, an example of an emulated Host Computer
system 21 is provided that emulates a Host computer system
50 of a Host architecture. In the emulated Host Computer
system 21, the Host processor (CPU) 1 is an emulated Host
processor (or virtual Host processor) and comprises an
emulation processor 27 having a different native instruction
set architecture than that of the processor 1 of the Host
Computer 50. The emulated Host Computer system 21 has
memory 22 accessible to the emulation processor 27. In the
example embodiment, the Memory 27 is partitioned into a
Host Computer Memory 2 portion and an Emulation Rou-
tines 23 portion. The Host Computer Memory 2 is available
to programs of the emulated Host Computer 21 according to
Host Computer Architecture. The emulation Processor 27
executes native instructions of an architected instruction set
of an architecture other than that of the emulated processor
1, the native instructions obtained from Emulation Routines
memory 23, and may access a Host instruction for execution
from a program in Host Computer Memory 2 by employing
one or more instructions obtained in a Sequence & Access/
Decode routine which may decode the Host instruction(s)
accessed to determine a native instruction execution routine
for emulating the function of the Host instruction accessed.
Other facilities that are defined for the Host Computer
System 50 architecture may he emulated by Architected
Facilities Routines, including such facilities as General
Purpose Registers, Control Registers, Dynamic Address
Translation I/O Subsystem support and processor cache for
example. The Emulation Routines may also take advantage
of function available in the emulation Processor 27 (such as
general registers and dynamic translation of virtual
addresses) to improve performance of the Emulation Rou-
tines. Special Hardware and Off-L.oad Engines may also be
provided to assist the processor 27 in emulating the function
of the Host Computer 50.

In a mainframe, architected machine instructions are used
by programmers, usually today “C” programmers often by
way of a compiler application. These instructions stored in
the storage medium may be executed natively in a z/Archi-
tecture IBM Server, or alternatively in machines executing
other architectures. They can be emulated in the existing and
in future IBM mainframe servers and on other machines of
IBM (e.g. pSeries® Servers and xSeries® Servers). They
can be executed in machines running Linux on a wide
variety of machines using hardware manufactured by
IBM®, Intel®, AMD™, Sun Microsystems and others.
Besides execution on that hardware under a Z/Architec-
ture®, Linux can he used as well as machines which use
emulation by Hercules, UMX, FSI (Fundamental Software,
Inc) or Platform Solutions, Inc. (PSI), where generally

US 9,459,872 B2

3

execution is in an emulation mode. In emulation mode,
emulation software is executed by a native processor to
emulate the architecture of an emulated processor.

The native processor 27 typically executes emulation
software 23 comprising either firmware or a native operating
system to perform emulation of the emulated processor. The
emulation software 23 is responsible for fetching and
executing instructions of the emulated processor architec-
ture. The emulation software 23 maintains an emulated
program counter to keep track of instruction boundaries. The
emulation software 23 may fetch one or more emulated
machine instructions at a time and convert the one or more
emulated machine instructions to a corresponding group of
native machine instructions for execution by the native
processor 27. These converted instructions may be cached
such that a faster conversion can be accomplished. Not
withstanding, the emulation software must maintain the
architecture rules of the emulated processor architecture so
as to assure operating systems and applications written for
the emulated processor operate correctly. Furthermore the
emulation software must provide resources identified by the
emulated processor 1 architecture including, but not limited
to control registers, general purpose registers, floating point
registers, dynamic address translation function including
segment tables and page tables for example, interrupt
mechanisms, context switch mechanisms, Time of Day
(TOD) clocks and architected interfaces to I/O subsystems
such that an operating system or an application program
designed to run on the emulated processor, can be run on the
native processor having the emulation software.

A specific instruction being emulated is decoded, and a
subroutine called to perform the function of the individual
instruction. An emulation software function 23 emulating a
function of an emulated. processor 1 is implemented, for
example, in a “C” subroutine or driver, or some other
method of providing a driver for the specific hardware as
will be within the skill of those in the art after understanding
the description of the preferred embodiment. Various soft-
ware and hardware emulation patents including, but not
limited to U.S. Pat. No. 5,551,013 for a “Multiprocessor for
hardware emulation” of Beausoleil et al. and U.S. Pat. No.
6,009,261 Preprocessing of stored target routines for emu-
lating incompatible instructions on a target processor” of
Scalzi et al; and U.S. Pat. No. 5,574,873: Decoding guest
instruction to directly access emulation routines that emulate
the guest instructions, of Davidian et al; U.S. Pat. No.
6,308,255: Symmetrical multiprocessing bus and chipset
used for coprocessor support allowing non-native code to
run in a system, of Gorishek et al; and U.S. Pat. No.
6,463,582; Dynamic optimizing object code translator for
architecture emulation and dynamic optimizing object code
translation method of Lethin et al; and U.S. Pat. No. 5,790,
825: Method for emulating guest instructions on a host
computer through dynamic recompilation of host instruc-
tions of Eric Traut; each of the above incorporated herein by
reference in their entirety. These references illustrate a
variety of known ways to achieve emulation of an instruc-
tion format architected for a different machine for a target
machine available to those skilled in the art, as well as those
commercial software techniques used by those referenced
above.

What is needed is new instruction functionality consistent
with existing architecture that relieves dependency on archi-
tecture resources such as general registers, improves func-
tionality and performance of software versions employing
the new instruction.

10

15

20

25

30

35

40

45

50

55

60

65

4
SUMMARY

In an embodiment of the High-word facility, an effective
number of General Purpose Registers (GPRs) available to
instructions of a program is extended in a computer having
a first number of large GPRs, each instruction comprising an
opcode and one or more GPR fields for specifying corre-
sponding GPRs, each large GPR comprising a first portion
and a second portion, said large GPRs comprising first small
GPRs consisting of first portions and second small GPRs
consisting of second portions, wherein responsive to the
computer being in a small GPR mode, performing a) and b)
are performed. a) instructions of a first set of instructions are
executed, the first set of instructions for accessing said first
small GPRs, the execution comprising generating memory
addresses for accessing memory operands based on said first
small GPRs or accessing first small GPR operands, wherein
the first small GPRs consist of said first portions; and b)
instructions of a second set of instructions are executed. the
second set of instructions for accessing said second small
GPRs, the execution comprising generating memory
addresses for accessing memory operands based on said
second small GPRs or accessing second small GPR oper-
ands, wherein the second small GPRs consist of said second
portions; and responsive to the computer being in a large
GPR mode, instructions of a third set of instructions are
executed, the execution comprising generating memory
addresses for accessing memory operands based on said
large GPRs or accessing large GPR operands comprising
said first portions and said second portions.

In an embodiment, the small GPR mode comprises being
in one of a 24 bit addressing mode or a 31 bit addressing
mode.

In an embodiment, the first portion is 32 bits, the second
portion is 32 bits and the third portion is 64 bits.

In an embodiment, execution of the instruction of the
second instruction set comprises performing a correspond-
ing opcode defined function based on two operands, and
storing the result, the corresponding opcode defined function
consisting of an ADD of two operands function or a COM-
PARE of two operands function.

In an embodiment, execution of the instruction of the
second instruction set comprises performing a correspond-
ing opcode defined function based on two operands, and
storing the result, the corresponding opcode defined function
consists of a LOAD of an operand from memory function or
a STORE of an operand to memory function.

In an embodiment, execution of the instruction of the
second instruction set comprises performing a correspond-
ing opcode defined function based on two operands, and
storing the result, the corresponding opcode defined function
is a ROTATE THEN INSERT SELECTED BITS function
comprising:

rotating a source operand by an instruction specified
amount; and

inserting a selected portion of the rotated source operand
in a selected portion of a target operand.

In an embodiment, an Operating System is supported
operating in Large GPR mode wherein the Large GPRs are
saved and restored during context switches for Applications
running in Small GPR mode.

In an embodiment, an Operating System operates in Large
GPR mode wherein the Large GPRs are saved and restored
during context switches for Applications running in Small
GPR mode.

US 9,459,872 B2

5

The above as well as additional objectives, features, and
advantages embodiments will become apparent in the fol-
lowing written description.

Other embodiments and aspects are described in detail
herein and are considered a part of the claimed invention.
For a better understanding of advantages and features, refer
to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The foregoing and
other objects, features, and advantages are apparent from the
following detailed description taken in conjunction with the
accompanying drawings in which:

FIG. 1 is a diagram depicting an example Host computer
system,

FIG. 2 is a diagram depicting an example emulation Host
computer system,

FIG. 3 is a diagram depicting an example computer
system,

FIG. 4 is a diagram depicting an example computer
network;

FIG. 5 is a diagram depicting an elements of a computer
system,

FIGS. 6-8 depict detailed elements of a computer system;

FIGS. 9-14 depict machine instruction format of a com-
puter system;

FIG. 15 depicts an example Large GPR;

FIGS. 16-17 presents an example High-Word embodi-
ment flow; and

FIG. 18 depicts an example context switch now.

DESCRIPTION

An embodiment may be practiced by software (sometimes
referred to Licensed Internal Code, Firmware, Micro-code,
Milli-code, Pico-code and the like, any of which would be
consistent with the embodiments). Referring to FIG. 1,
software program code is typically accessed by the proces-
sor also known as a CPU (Central Processing Unit) 1 of the
system 50 from long-term storage media 11, such as a
CD-ROM drive, tape drive or hard drive. The software
program code may be embodied on any of a variety of
known media for use with a data processing system, such as
a diskette, hard drive, or CD-ROM. The code may be
distributed on such media, or may be distributed to users
from the computer memory 2 or storage of one computer
system over a network 10 to other computer systems for use
by users of such other systems.

Alternatively, the program code may he embodied in the
memory 2, and accessed by the processor 1 using the
processor bus. Such program code includes an operating
system which controls the function and interaction of the
various computer components and one or more application
programs. Program code is normally paged from dense
storage media 11 to high-speed memory 2 where it is
available for processing by the processor 1. The techniques
and methods for embodying software program code in
memory, on physical media, and/or distributing software
code via networks are well known and will not be further
discussed herein. Program code, when created and stored on
a tangible medium (including but not limited to electronic
memory modules (RAM), flash memory, Compact Discs
(CDs), DVDs, Magnetic Tape and the like is often referred
to as a “computer program product”. The computer program

10

15

20

25

30

35

40

45

50

55

60

65

6

product medium is typically readable by a processing circuit
preferably in a computer system for execution by the pro-
cessing circuit.

FIG. 3 illustrates a representative workstation or server
hardware system. The system 100 of FIG. 1C comprises a
representative computer system 101, such as a personal
computer, a workstation or a server, including optional
peripheral devices. The workstation 101 includes one or
more processors 106 and a bus employed to connect and
enable communication between the processor(s) 106 and the
other components of the system 101 in accordance with
known techniques. The bus connects the processor 106 to
memory 105 and long-term storage 107 which can include
a hard drive (including any of magnetic media, CD, DVD
and Flash Memory for example) or a tape drive for example.
The system 101 might also include a user interface adapter,
which connects the microprocessor 106 via the bus to one or
more interface devices, such as a keyboard 104, mouse 103,
a Printer/scanner 110 and/or other interface devices, which
can be any user interface device, such as a touch sensitive
screen, digitized entry pad, etc. The bus also connects a
display device 102, such as an LCD screen or monitor, to the
microprocessor 106 via a display adapter.

The system 101 may communicate with other computers
or networks of computers by way of a network adapter
capable of communicating 108 with a network 109.
Example network adapters are communications channels,
token ring, Ethernet or modems. Alternatively, the worksta-
tion 101 may communicate using: a wireless interface, such
as a CDPD (cellular digital packet data) card. The worksta-
tion 101 may be associated with such other computers in a
Local Area Network (LAN) or a Wide Area Network
(WAN), or the workstation 101 can be a client in a client/
serve arrangement with another computer, etc. All of these
configurations, as well as the appropriate communications
hardware and software, are known in the art.

FIG. 4 illustrates a data processing network 200 in which
embodiments may be practiced. The data processing net-
work 200 may include a plurality of individual networks,
such as a wireless network and a wired network, each of
which may include a plurality of individual workstations
101 201 202 203 204. Additionally, as those skilled in the art
will appreciate, one or more LANs may be included, where
a LAN may comprise a plurality of intelligent workstations
coupled to a host processor.

Still referring to FIG. 4, the networks may also include
mainframe computers or servers, such as a gateway com-
puter (client server 206) or application server (remote server
208 which may access a data repository and may also be
accessed directly from a workstation 205). A gateway com-
puter 206 serves as a point of entry into each network 207.
A gateway is needed when connecting one networking
protocol to another. The gateway 206 may be preferably
coupled to another network (the Internet 207 for example)
by means of a communications link. The gateway 206 may
also be directly coupled to one or more workstations 101 201
202 203 204 using a communications link. The gateway
computer may be implemented utilizing an IBM eServer™
zSeries® z9® Server available from IBM Corp.

Software programming code is typically accessed by the
processor 106 of the system 101 from long-term storage
media 107. such as a CD-ROM drive or hard drive. The
software programming code may be embodied on any of a
variety of known media for use with a data processing
system, such as a diskette, hard drive, or CD-ROM. The
code may be distributed on such media, or may be distrib-
uted to users 210 211 from the memory or storage of one

US 9,459,872 B2

7

computer system over a network to other computer systems
for use by users of such other systems.

Alternatively, the programming code 111 may be embod-
ied in the memory 105, and accessed by the processor 106
using the processor bus. Such programming code includes
an operating system which controls the function and inter-
action of the various computer components and one or more
application programs 112. Program code is normally paged
from dense storage media 107 to high-speed memory 105
where it is available for processing by the processor 106.
The techniques and methods for embodying software pro-
gramming code in memory, on physical media, and/or
distributing software code via networks are well known and
will not be further discussed herein. Program code, when
created and stored on a tangible medium (including but not
limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs). DVDs, Magnetic Tape and
the like is often referred to as a “computer program prod-
uct”. The computer program product medium is typically
readable by a processing circuit preferably in a computer
system for execution by the processing circuit.

The cache that is most readily available to the processor
(normally faster and smaller than other caches of the pro-
cessor) is the lowest (L1 or level one) cache and main store
(main memory) is the highest level cache (L3 if there are 3
levels). The lowest level cache is often divided into an
instruction cache (I-Cache) holding machine instructions to
be executed and a data cache (D-Cache) holding data
operands.

Referring to FIG. 5, an exemplary processor embodiment
is depicted for processor 106. Typically one or more levels
of Cache 303 are employed to buffer memory blocks in order
to improve processor performance. The cache 303 is a high
speed buffer holding cache lines of memory data that are
likely to he used. Typical cache lines are 64, 128 or 256
bytes of memory data. Separate Caches are often employed
for caching instructions than for caching data. Cache coher-
ence (synchronization of copies of lines in Memory and the
Caches) is often provided by various “Snoop” algorithms
well known in the art. Main storage 105 of a processor
system is often referred to as a cache. In a processor system
having 4 levels of cache 303 main storage 105 is sometimes
referred to as the level 5 (L5) cache since it is typically faster
and only holds a portion of the non-volatile storage (DASD,
Tape etc) that is available to a computer system. Main
storage 105 “caches” pages of data paged in and out of the
main storage 105 by the Operating system.

A program counter (instruction counter) 311 keeps track
of the address of the current instruction to be executed. A
program counter in a z/Architecture processor is 64 bits and
can be truncated to 31 or 24 bits to support prior addressing
limits. A program counter is typically embodied in a PSW
(program status word) of a computer such that it persists
during context switching. Thus, a program in progress,
having a program counter value, may be interrupted by, for
example, the operating system (context switch from the
program environment to the Operating system environ-
ment). The PSW of the program maintains the program
counter value while the program is not active, and the
program counter (in the PSW) of the operating system is
used while the operating system is executing. Typically the
Program counter is incremented by an amount equal to the
number of bytes of the current instruction. RISC (Reduced
Instruction Set Computing) instructions are typically fixed
length while CISC (Complex Instruction Set Computing)
instructions are typically variable length. Instructions of the
IBM z/Architecture are CISC instructions having a length of

20

25

40

45

8

2, 4 or 6 bytes. The Program counter 311 is modified by
either a context switch operation or a Branch taken operation
of a Branch instruction for example. In a context switch
operation, the current program counter value is saved in a
Program Status Word (PSW) along with other state infor-
mation about the program being executed (such as condition
codes), and a new program counter value is loaded pointing
to an instruction of a new program module to be executed.
A branch taken operation is performed in order to permit the
program to make decisions or loop within the program by
loading the result of the Branch Instruction into the Program
Counter 311.

Typically an instruction Fetch Unit 305 is employed to
fetch instructions on behalf of the processor 106. The fetch
unit either fetches “next sequential instructions”, target
instructions of Branch Taken instructions, or first instruc-
tions of a program following a context switch. Modern
Instruction fetch units often employ prefetch techniques to
speculatively prefetch instructions based on the likelihood
that the prefetched instructions might be used. For example,
a fetch unit may fetch 16 bytes of instruction that includes
the next sequential instruction and additional bytes of further
sequential instructions.

The fetched instructions are then executed by the proces-
sor 106. In an embodiment, the fetched instruction(s) are
passed to a dispatch unit 306 of the fetch unit. The dispatch
unit decodes the instruction(s) and forwards information
about the decoded instruction(s) to appropriate units 307 308
310. An execution unit 307 will typically receive informa-
tion about decoded arithmetic instructions from the instruc-
tion fetch unit 305 and will perform arithmetic operations on
operands according to the opcode of the instruction. Oper-
ands are provided to the execution unit 307 preferably either
from memory 105, architected registers 309 or from an
immediate field of the instruction being executed. Results of
the execution, when stored, are stored either in memory 105,
registers 309 or in other machine hardware such as control
registers, PSW registers and the like).

A processor 106 typically has one or more execution units
307 308 310 for executing the function of the instruction.
Referring to FIG. 6, an execution unit 307 may communi-
cate with architected general registers 309, a decode/dis-
patch unit 306 a load store unit 310 and other 401 processor
units by way of interlacing logic 407. An Execution unit 307
may employ several register circuits 403 404 405 to hold
information that the arithmetic logic unit (ALU) 402 will
operate on. The ALU performs arithmetic operations such as
add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift.
Preferably the AL U supports specialized operations that are
design dependent. Other circuits may provide other archi-
tected facilities 408 including condition codes and recovery
support logic for example. Typically the result of an ALU
operation is held in an output register circuit 406 which can
forward the result to a variety of other processing functions.
There are many arrangements of processor units, the present
description is only intended to provide a representative
understanding of one embodiment.

An ADD instruction for example would be executed in an
execution unit 307 having arithmetic and logical function-
ality while a Floating Point instruction for example would be
executed in a floating Point Execution having specialized
Floating Point capability. Preferably, an execution unit oper-
ates on operands identified by an instruction by performing
an opcode defined function on the operands. For example, an

US 9,459,872 B2

9

ADD instruction may be executed by an execution unit 307
on operands found in two registers 309 identified by register
fields of the instruction.

The execution unit 307 performs the arithmetic addition
on two operands and stores the result in a third operand
where the third operand may be a third register or one of the
two source registers. The Execution unit preferably utilizes
an Arithmetic Logic Unit (ALU) 402 that is capable of
performing a variety of logical functions such as Shift,
Rotate, And, Or and XOR as well as a variety of algebraic
functions including any of add, subtract, multiply, divide.
Some ALUs 402 are designed for scalar operations and some
for floating point. Data may be Big Endian (where the least
significant byte is at the highest byte address) or Little
Endian (where the least significant byte is at the lowest byte
address) depending on architecture. The IBM z/Architecture
is Big Endian. Signed fields may be sign and magnitude, 1’s
complement or 2’s complement depending on architecture.
A 2’s complement number is advantageous in that the ALU
does not need to design a subtract capability since either a
negative value or a positive value in 2’s complement
requires only and addition within the ALU. Numbers are
commonly described in shorthand, where a 12 bit field
defines an address of a 4,096 byte block and is commonly
described as a 4 Kbyte (Kilo-byte) block for example.
Trimodal Addressing

“Trimodal addressing” refers to the ability to switch
between the 24-bit, 31-bit, and 64-bit addressing modes.
This switching can be done by means of:

The old instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE. Both of
these instructions set the 64-bit addressing mode if bit
63 of the R2 general register is one. If bit 63 is zero, the
instructions set the 24-bit or 31-bit addressing mode if
bit 32 of the register is zero or one, respectively.

The new instruction SET ADDRESSING MODE
(SAM24, SAM31, and SAM64).

The instruction sets the 24-bit, 31-bit, or 64-bit addressing
mode as determined by the operation code.
Tri-Modal Instructions

Trimodal addressing affects the general instructions only
in the manner in which logical storage addresses are
handled, except as follows.

The instructions BRANCH AND LINK, BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE,
BRANCH AND SET MODE, and BRANCH RELA-
TIVE AND SAVE place information in bit positions
32-39 of general register R1 as in ESA/390 in the 24-bit
or 31-bit addressing mode or place address bits in those
bit positions in the 64-bit addressing mode. The new
instruction BRANCH RELATIVE AND SAVE LONG
does the same.

The instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE, place a one
in bit position 63 of general register R1 in the 64-bit
addressing mode. In the 24-bit or 31-bit mode,
BRANCH AND SAVE AND SET MODE sets bit 63 to
zero, and BRANCH AND SET MODE leaves it
unchanged.

Certain instructions leave bits 0-31 of a general register
unchanged in the 24-bit or 31-bit addressing mode but
place or update address or length information in them
in the 64-bit addressing mode. These are listed in
programming note 1 on page 7-7 and are sometimes
called modal instructions.

10

15

20

25

30

40

45

50

55

60

65

10

Effects on Bits 0-31 of a General Register:

Bits 0-31 of general registers are changed by two types of
instructions. The first type is a modal instruction (see the
preceding section) when the instruction is executed in the
64-bit addressing mode. The second type is an instruction
having, independent of the addressing mode, either a 64-bit
result operand in a single general register or a 128-bit result
operand in an even-odd general-register pair. Most of the
instructions of the second type are indicated by a “G,” either
alone or in “GF,” in their mnemonics. All of the instructions
of the second type are sometimes referred to as “G-type”
instructions. If a program is not executed in the 64-bit
addressing mode (Large GPR mode) and does not contain a
G-type instruction, it cannot change bits 0-31 of any general
register (Small GPR mode). In some environments, a portion
of an application program may be in Small GPR mode and
another portion may be in Large GPR mode. In an embodi-
ment, certain instructions may be Small GPR mode instruc-
tions and others may be Large GPR mode instructions,
wherein the mode of the computer is dependent on whether
it is executing a Small GPR mode instruction or a Large
GPR mode instruction.

Referring to FIG. 7, Branch instruction information for
executing a branch instruction is typically sent to a branch
unit 308 which often employs a branch prediction algorithm
such as a branch history table 432 to predict the outcome of
the branch before other conditional operations are complete.
The target of the current branch instruction will be fetched
and speculatively executed before the conditional operations
are complete. When the conditional operations are com-
pleted the speculatively executed branch instructions are
either completed or discarded based on the conditions of the
conditional operation and the speculated outcome. A typical
branch instruction may test condition codes and branch to a
target address if the condition codes meet the branch require-
ment of the branch instruction, a target address may be
calculated based on several numbers including ones found in
register fields or an immediate field of the instruction for
example. The branch unit 308 may employ an ALU 426
having a plurality of input register circuits 427 428 429 and
an output register circuit 430. The branch unit 308 may
communicate with general registers 309, decode dispatch
unit 306 or other circuits 425 for example.

The execution of a group of instructions can be inter-
rupted for a variety of reasons including a context switch
initiated by an operating system, a program exception or
error causing a context switch, an I/O interruption signal
causing a context switch or multi-threading activity of a
plurality of programs (in a multi-threaded environment) for
example. Preferably a context switch action saves state
information about a currently executing program and then
loads state information about another program being
invoked. State information may he saved in hardware reg-
isters or in memory for example. State information prefer-
ably comprises a program counter value pointing to a next
instruction to be executed, condition codes, memory trans-
lation information and architected register content. A context
switch activity can be exercised by hardware circuits, appli-
cation programs, operating system programs or firmware
code (microcode, pica-code or licensed internal code (LIC)
alone or in combination.

A processor accesses operands according to instruction
defined methods. The instruction may provide an immediate
operand using the value of a portion of the instruction, may
provide one or more register fields explicitly pointing to
either general purpose registers or special purpose registers
(floating point registers for example). The instruction may

US 9,459,872 B2

11

utilize implied registers identified by an opcode field as
operands. The instruction may utilize memory locations for
operands. A memory location of an operand may be pro-
vided by a register, an immediate field, or a combination of
registers and immediate field as exemplified by the z/Archi-
tecture long displacement facility wherein the instruction
defines a Base register, an Index register and an immediate
field (displacement field) that are added together to provide
the address of the operand in memory for example. Location
herein typically implies a location in main memory (main
storage) unless otherwise indicated.

Referring to FIG. 8, a processor accesses storage using a
Load/Store unit 310. The Load/Store unit 310 may perform
a Load operation by obtaining the address of the target
operand in memory 303 and loading the operand in a register
309 or another memory 303 location, or may perform a Store
operation by obtaining the address of the target operand in
memory 303 and storing data obtained from a register 309
or another memory 303 location in the target operand
location in memory 303. The Load/Store unit 310 may be
speculative and may access memory in a sequence that is
out-of-order relative to instruction sequence, however the
Load/Store unit 310 must maintain the appearance to pro-
grams that instructions were executed in order. A load/store
unit 310 may communicate with general registers 309,
decode/dispatch unit 306, Cache/Memory interface 303 or
other elements 455 and comprises various register circuits,
ALUs 458 and control logic 463 to calculate storage
addresses and to provide pipeline sequencing to keep opera-
tions in-order. Some operations may be out of order but the
Load/Store unit provides functionality to make the out of
order operations to appear to the program as having been
performed in order as is well known in the art.

Preferably addresses that an application program “sees”
are often referred to as virtual addresses. Virtual addresses
are sometimes referred to as “logical addresses” and “effec-
tive addresses”. These virtual addresses are virtual in that
they are redirected to physical memory location by one of a
variety of Dynamic Address Translation (DAT) 312 tech-
nologies including, but not limited to simply prefixing a
virtual address with an offset value, translating the virtual
address via one or more translation tables, the translation
tables preferably comprising at least a segment table and a
page table alone or in combination, preferably, the segment
table having an entry pointing to the page table. In z/Archi-
tecture, a hierarchy of translation is provided including a
region first table, a region second table, a region third table,
a segment table and an optional page table. The performance
of the address translation is often improved by utilizing a
Translation Look-aside Buffer (TLB) which comprises
entries mapping a virtual address to an associated physical
memory location. The entries are created when DAT 312
translates a virtual address using the translation tables.
Subsequent use of the virtual address can then utilize the
entry of the fast TLB rather than the slow sequential
Translation table accesses. TLB content may be managed by
a variety of replacement algorithms including LRU (Least
Recently used).

In the case where the Processor is a processor of a
multi-processor system, each processor has responsibility to
keep shared resources such as I/O, caches, TLBs and
Memory interlocked for coherency. Typically “snoop” tech-
nologies will be utilized in maintaining cache coherency. In
a snoop environment, each cache line may be marked as
being in any one of a shared state, an exclusive state, a
changed state, an invalid state and the like in order to
facilitate sharing.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

1/O units 304 provide the processor with means for
attaching to peripheral devices including Tape, Disc, Print-
ers, Displays, and networks for example. I/O units are often
presented to the computer program by software Drivers. In
Mainframes such as the z/Series from IBM, Channel Adapt-
ers and Open System Adapters are I/O units of the Main-
frame that provide the communications between the oper-
ating system and peripheral devices.

The following description from the z/Architecture Prin-
ciples of Operation describes an architectural view of a
computer system:

Storage:

A computer system includes information in main storage,
as well as addressing, protection, and reference and change
recording. Some aspects of addressing include the format of
addresses, the concept of address spaces, the various types
of addresses, and the manner in which one type of address
is translated to another type of address. Some of main
storage includes permanently assigned storage locations.
Main storage provides the system with directly addressable
fast-access storage of data. Both data and programs must he
loaded into main storage (from input devices) before they
can be processed.

Main storage may include one or more smaller, faster-
access buffer storages, sometimes called caches. A cache is
typically physically associated with a CPU or an 1/O pro-
cessor. The effects, except on performance, of the physical
construction and use of distinct storage media are generally
not observable by the program.

Separate caches may be maintained for instructions and
for data operands. Information within a cache is maintained
in contiguous bytes on an integral boundary called a cache
block or cache line (or line, for short). A model may provide
an EXTRACT CACHE ATTRIBUTE Instruction which
returns the size of a cache line in bytes. A model may also
provide PREFETCH DATA and PREFETCH DATA RELA-
TIVE LONG instructions which effects the prefetching of
storage into the data or instruction cache or the releasing of
data from the cache.

Storage is viewed as a long horizontal string of bits. For
most operations, accesses to storage proceed in a left-to-
right sequence. The string of bits is subdivided into units of
eight bits. An eight-bit unit is called a byte, which is the
basic building block of all information formats. Each byte
location in storage is identified by a unique nonnegative
integer, which is the address of that byte location or, simply,
the byte address. Adjacent byte locations have consecutive
addresses, starting with 0 on the left and proceeding in a
left-to-right sequence. Addresses are unsigned binary inte-
gers and are 24, 31, or 64 bits.

Information is transmitted between storage and a CPU or
a channel subsystem one byte, or a group of bytes, at a time.
Unless otherwise specified, a group of bytes in storage is
addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly specified by
the operation to be performed, When used in a CPU opera-
tion, a group of bytes is called a field. Within each group of
bytes, bits are numbered in a left-to-right sequence. The
leftmost bits are sometimes referred to as the “high-order”
bits and the rightmost bits as the “low-order” bits. Bit
numbers are not storage addresses, however. Only bytes can
be addressed. To operate on individual bits of a byte in
storage, it is necessary to access the entire byte. The bits in
a byte are numbered 0 through 7, from left to right. The bits
in an address may be numbered 8 -31 or 40-63 for 24-bit
addresses or 1-31 or 33-63 for 31-bit addresses: they are
numbered 0-63 for 64-bit addresses. Within any other fixed-

US 9,459,872 B2

13

length format of multiple bytes, the bits making up the
format are consecutively numbered starting from 0. For
purposes of error detection, and in preferably for correction,
one or more check bits may be transmitted with each byte or
with a group of bytes. Such check bits are generated
automatically by the machine and cannot be directly con-
trolled by the program. Storage capacities are expressed in
number of bytes. When the length of a storage-operand field
is implied by the operation code of an instruction, the field
is said to have a fixed length, which can be one, two, four,
eight, or sixteen bytes. Larger fields may be implied for
some instructions. When the length of a storage-operand
field is not implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands can vary in
length by increments of one byte. When information is
placed in storage, the contents of only those byte locations
are replaced that are included in the designated field, even
though the width of the physical path to storage may be
greater than the length of the field being stored.

Certain units of information must be on an integral
boundary in storage. A boundary is called integral for a unit
of information when its storage address is a multiple of the
length of the unit in bytes. Special names are given to fields
of 2, 4, 8, and 16 bytes on an integral boundary. A halfword
is a group of two consecutive bytes on a two-byte boundary
and is the basic building block of instructions. A word is a
group of four consecutive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes on an
eight-byte boundary. A quadword is a group of 16 consecu-
tive bytes on a 16-byte boundary. When storage addresses
designate halfwords, words, doublewords, and quadwords,
the binary representation of the address contains one, two,
three, or four rightmost zero bits, respectively. Instructions
must be on two-byte integral boundaries. The storage oper-
ands of most instructions do not have boundary-alignment
requirements.

On models that implement separate caches for instruc-
tions and data operands, a significant delay may be experi-
enced if the program stores into a cache line from which
instructions are subsequently fetched, regardless of whether
the store alters the instructions that are subsequently fetched.
Instructions:

Typically, operation of the CPU is controlled by instruc-
tions in storage that are executed sequentially, one at a time,
left to right in an ascending sequence of storage addresses.
A change in the sequential operation may be caused by
branching, LOAD PSW, interruptions, SIGNAL PROCES-
SOR orders, or manual intervention.

Preferably an instruction comprises two major parts:

An operation code (op code), which specifies the opera-

tion to be performed

Optionally, the designation of the operands that partici-

pate.

Instruction formats of the z/Architecture are shown in
FIGS. 9-14. An instruction can simply provide an Opcode
501, or an opcode and a variety of fields including imme-
diate operands or register specifiers for locating operands in
registers or in memory. The Opcode can indicate to the
hardware that implied resources (operands etc) are to be
used such as one or more specific general purpose registers
(GPRs). Operands can be grouped in three classes: operands
located in registers, immediate operands, and operands in
storage. Operands may be either explicitly or implicitly
designated. Register operands can be located in general,
floating-point, access, or control registers, with the type of
register identified by the op code. The register containing the
operand is specified by identitying the register in a four-bit

10

15

20

25

30

35

40

45

50

55

60

14

field, called the R field, in the instruction. For some instruc-
tions, an operand is located in an implicitly designated
register, the register being implied by the op code. Imme-
diate operands are contained within the instruction, and the
8-bit, 16-bit, or 32-bit field containing the immediate oper-
and is called the I field. Operands in storage may have an
implied length; be specified by a bit mask; be specified by
a four-bit or eight-bit length specification, called the L field,
in the instruction; or have a length specified by the contents
of a general register. The addresses of operands in storage
are specified by means of a format that uses the contents of
a general register as part of the address. This makes it
possible to:
1. Specify a complete address by using an abbreviated
notation
2. Perform address manipulation using instructions which
employ general registers for operands
3. Modify addresses by program means without alteration of
the instruction stream
4. Operate independent of the location of data areas by
directly using addresses received from other programs

The address used to refer to storage either is contained in
a register designated by the R field in the instruction or is
calculated from a base address, index, and displacement,
specified by the B, X, and D fields, respectively, in the
instruction. When the CPU is in the access-register mode, a
B or R field may designate an access register in addition to
being used to specify an address. To describe the execution
of instructions, operands are preferably designated as first
and second operands and, in some cases, third and fourth
operands. In general, two operands participate in an instruc-
tion execution, and the result replaces the first operand.

An instruction is one, two, or three halfwords in length
and must be located in storage on a halfword boundary.
Referring to FIGS. 9-14 depicting instruction formats, each
instruction is in one of 25 basic formats; E 501, 1502, RI 503
504, RIE 505 551 552 553 554, RIL 506 507, RIS 555, RR
510, RRE 511, RRF 512 513 514, RRS, RS 516 517, RSI
520, RSL 521, RSY 522 523, RX 524, RXE 525, RXF 526,
RXY 527, S 530, SI 531, SIL 556, SIY 532, SS 533 534 535
536 537, SSE 541 and SSF 542, with three variations of
RRF, two of RI, RIL, RS, and RSY, five of RIE and SS.

The format names indicate, in general terms, the classes
of operands which participate in the operation and some
details about fields:

RIS denotes a register-and-immediate operation and a

storage operation.

RRS denotes a register-and-register operation and a stor-

age operation.

SIL denotes a storage-and-immediate operation, with a

16-bit immediate field.

In the I, RR, RS, RSI, RX, SI, and SS formats, the first
byte of an instruction contains the op code. In the E, RRE,
RRF, S, SIL, and SSE formats, the first two bytes of an
instruction contain the op code, except that for some instruc-
tions in the S format, the op code is in only the first byte. In
the RI and RIL formats, the op code is in the first byte and
bit positions 12-15 of an instruction. In the RIE, RIS, RRS,
RSL, RSY, RXE, RSF, and STY formats, the op code is in
the first byte and the sixth byte of an instruction. The first
two bits of the first or only byte of the op code specify the
length and format of the instruction, as follows:

In the RR, RRE, RRF, RRR, RX, RXE, RXF, RXY, RS,
RSY, RSI RI, RIE, and RIL formats, the contents of the
register designated by the R1. field are called the first
operand. The register containing the first operand is some-
times referred to as the “first operand location,” and some-

US 9,459,872 B2

15

times as “register R1”. In the RR, RRE, RRF and RRR
formats, the R2 field designates the register containing the
second operand, and the R2 field may designate the same
register as R1. In the RFF, RXF, RS, RSY, RSI, and RIE
formats, the use of the R3 field depends on the instruction.
In the RS and RSY formats, the R3 field may instead be an
M3 field specifying a mask. The R field designates a general
or access register in the general instructions, a general
register in the control instructions, and a floating-point
register or a general register in the floating-point instruc-
tions. For general and control registers, the register operand
is in bit positions 32-63 of the 64-bit register or occupies the
entire register, depending on the instruction,

In the I format, the contents of the eight-bit immediate-
data field, the I field of the instruction. are directly used as
the operand. In the SI format, the contents of the eight-bit
immediate-data field, the 12 field of the instruction, are used
directly as the second operand. The B1 and D1 fields specify
the first operand, which is one byte in length. In the STY
format, the operation is the same except that DH1 and DL.1
fields me used instead of a D1 field. In the RI format for the
instructions ADD HALFWORD IMMEDIATE, COMPARE
HALFWORD IMMEDIATE, LOAD HALFWORD IMME-
DIATE, and MULTIPLY HALFWORD IMMEDIATE, the
contents of the 16-bit 12 field of the instruction are used
directly as a signed binary integer, and the R1 field specifies
the first operand, which is 32 or 64 bits in length, depending
on the instruction. For the instruction TEST UNDER MASK
(TMHH, TMHL, TMLH, TMLL), the contents of the 12 field
are used as a mask, and the R1 field specifies the first
operand, which is 64 bits in length.

For the instructions INSERT IMMEDIATE, AND IMME-
DIATE, OR IMMEDIATE, and LOAD LOGICAL IMME-
DIATE, the contents of the 12 field are used as an unsigned
binary integer or a logical value, and the R1 field specifies
the first operand, which is 64 bits in length. For the relative-
branch instructions in the RI and RSI formats, the contents
of the 16-bit 12 field are used as a signed binary integer
designating a number of halfwords. This number, when
added to the address of the branch instruction, specifies the
branch address. For relative-branch instructions in the RIL
format, the 12 field is 32 bits and is used in the same way.

For the relative-branch instructions in the RI and RSI
formats, the contents of the 16-bit 12 field are used as a
signed binary integer designating a number of halfwords.
This number, when added to the address of the branch
instruction, specifies the branch address. For relative-branch
instructions in the RIL format, the 12 field is 32 bits and is
used in the same way. For the RIE-format instructions
COMPARE IMMEDIATE AND BRANCH RELATIVE and
COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE, the contents of the 8-bit 12 field is used directly
as the second operand. For the RIE-format instructions
COMPARE IMMEDIATE AND BRANCH, COMPARE
IMMEDIATE AND TRAP, COMPARE LOGICAL IMME-
DIATE AND BRANCH, and COMPARE LOGICAL
IMMEDIATE AND TRAP, the contents of the 16-bit 12 field
are used directly as the second operand. For the RIE-format
instructions COMPARE AND BRANCH RELATIVE,
COMPARE IMMEDIATE AND BRANCH RELATIVE,
COMPARE LOGICAL AND BRANCH RELATIVE, and
COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE, the contents of the 16-bit 14 field are used as
a signed binary integer designating a number of halfwords
that are added to the address of the instruction to form the
branch address.

10

15

20

25

30

35

40

45

50

55

60

65

16

For the RIL-format instructions ADD IMMEDIATE,
ADD LOGICAL IMMEDIATE, ADD LOGICAL WITH
SIGNED IMMEDIATE, COMPARE IMMEDIATE, COM-
PARE LOGICAL IMMEDIATE, LOAD IMMEDIATE, and
MULTIPLY SINGLE IMMEDIATE, the contents of the
32-bit 12 field are used directly as a the second operand.

For the RIS-format instructions, the contents of the 8-bit
12 field are used directly as the second operand. In the SIL
format, the contents of the 16-bit 12 field are used directly as
the second operand. The B1 and D1 fields specify the first
operand, as described below.

In the RSL, SI, SIL, SSE, and most SS formats, the
contents of the general register designated by the B1 field are
added to the contents of the D1 field to form the first-
operand address. In the RS, RSY, S, SIY, SS, and SSE
formats, the contents of the general register designated by
the B2 field are added to the contents of the D2 field or DH2
and DL2 fields to form the second-operand address. In the
RX, RXE, RXF, and RXY formats, the contents of the
general registers designated by the X2 and B2 fields are
added to the contents of the D2 field or DH2 and DL2 fields
to form the second-operand address. In the RIS and RRS
formats, and in one SS format, the contents of the general
register designated by the B4 field are added to the contents
of the D4 field to form the fourth-operand address.

In the SS format with a single, eight-bit length field, for
the instructions AND (NC), EXCLUSIVE OR (XC), MOVE
(MVC), MOVE NUMERICS, MOVE ZONES, and OR
(OC), L specifies the number of additional operand bytes to
the right of the byte designated by the first-operand address.
Therefore, the length in bytes of the first operand is 1-256,
corresponding to a length code in L. of 0-255. Storage results
replace the first, operand and are never stored outside the
field specified by the address and length. In this format, the
second operand has the same length as the first operand.
There are variations of the preceding definition that apply to
EDIT, EDIT AND MARK, PACK ASCII, PACK UNI-
CODE, TRANSLATE, TRANSLATE AND TEST,
UNPACK ASCII, and UNPACK UNICODE.

In the SS format with two length fields, and in the RSL
format, L1 specifies the number of additional operand bytes
to the right of the byte designated by the first-operand.
address. Therefore, the length in bytes of the first operand is
1-16, corresponding to a length code in L1 of 0-15. Simi-
larly, 1.2 specifies the number of additional operand bytes to
the right of the location designated by the second-operand
address Results replace the first operand and are never stored
outside the field specified by the address and length. If the
first operand is longer than the second, the second operand
is extended on the left with zeros up to the length of the first
operand. This extension does not modify the second operand
in storage. In the SS format with two R fields, as used by the
MOVE TO PRIMARY, MOVE TO SECONDARY, and
MOVE WITH KEY instructions, the contents of the general
register specified by the R1 field are a 32-bit unsigned value
called the true length. The operands are both of a length
called the effective length. The effective length is equal to
the true length or 256, whichever is less. The instructions set
the condition code to facilitate programming a loop to move
the total number of bytes specified by the true length. The SS
format with two R fields is also used to specify a range of
registers and two storage operands for the LOAD MUL-
TIPLE DISJOINT instruction and to specify one or two
registers and one or two storage operands for the PERFORM
LOCKED OPERATION instruction.

A zero in any of the B1, B2, X2, or B4 fields indicates the
absence of the corresponding address component. For the

US 9,459,872 B2

17

absent component, a zero is used informing the intermediate
sum, regardless of the contents of general register 0. A
displacement of zero has no special significance.

Bits 31 and 32 of the current PSW are the addressing-
mode bits. Bit 31 is the extended-addressing mode bit, and
bit 32 is the basic-addressing-mode bit. These bits control
the size of the effective address produced by address gen-
eration. When bits 31 and 32 of the current PSW both are
zeros, the CPU is in the 24-bit addressing mode, and 24-bit
instruction and operand effective addresses are generated.
When bit 31 of the current PSW is zero and bit 32 is one, the
CPU is in the 31-bit addressing mode, and 31-bit instruction
and operand effective addresses are generated. When bits 31
and 32 of the current PSW are both one, the CPU is in the
64-bit addressing mode. and 64-bit instruction and operand
effective addresses are generated. Execution of instructions
by the CPU involves generation of the addresses of instruc-
tions and operands.

When an instruction is fetched from the location desig-
nated by the current PSW, the instruction address is
increased by the number of bytes in the instruction, and the
instruction is executed. The same steps are then repeated b
using the new value of the instruction address to fetch the
next instruction in the sequence. In the 24-bit addressing
mode, instruction addresses wrap around, with the halfword
at instruction address 22*-2 being followed by the half word
at instruction address 0. Thus, in the 24-bit addressing mode,
any carry out of PSW bit position 104, as a result of updating
the instruction address, is lost. In the 31-bit or 64-bit
addressing mode, instruction addresses similarly wrap
around, with the halfword at instruction address 2°!-2%4-2,
respectively, followed by the halfword at instruction address
0. A carry out of PSW bit position 97 or 64, respectively, is
lost.

An operand address that refers to storage is derived from
an intermediate value, which either is contained in a register
designated by an R field in the instruction or is calculated
from the sum of three binary numbers: base address, index,
and displacement. The base address (B) is a 64-bit number
contained in a general register specified by the program in a
four bit field, called the B field, in the instruction. Base
addresses can he used as a means of independently address-
ing each program and data area. In array type calculations,
it can designate the location of an array, and, in record-type
processing, it can identify the record. The base address
provides for addressing the entire storage. The base address
may also he used for indexing.

The index (X) is a 64-bit number contained in a general
register designated by the program in a four-bit field, called
the X field, in the instruction. It is included only in the
address specified by the RX-, RXE-, and RXY-format
instructions. The RX-, RXE-, RXF-, and RXY-format
instructions permit double indexing; that is, the index can be
used to provide the address of an element within an array.

The displacement (D) is a 12-bit or 20-bit number con-
tained in a field, called the D field, in the instruction. A 12-bit
displacement is unsigned and provides for relative address-
ing of up to 4,095 bytes beyond the location designated by
the base address. A 20-bit displacement is signed and
provides for relative addressing of up to 524,287 bytes
beyond the base address location or of up to 524,288 bytes
before it. In array-type calculations, the displacement can be
used to specify one of many items associated with an
element. In the processing of records, the displacement can
he used to identity items within a record. A 12-bit displace-
ment is in bit positions 20-31 of instructions of certain

10

15

20

25

30

35

40

45

50

55

60

65

18

formats. In instructions of some formats, a second 12-bit
displacement also is in the instruction, in bit positions 36-47.

A 20-bit displacement is in instructions of only the RSY,
RXY, or SIY format. In these instructions, the D field
consists of a DL (low) field in bit positions 20-31 and of a
DH (high) field in bit positions 32-39. When the long-
displacement facility is installed, the numeric value of the
displacement is formed by appending the contents of the DH
field on the left of the contents of the DL field. When the
long-displacement facility is not installed, the numeric value
of the displacement is formed by appending eight zero bits
on the left of the contents of the DL field, and the contents
of the DH field are ignored.

In forming the intermediate sum, the base address and
index are treated as 64-bit binary integers. A 12-bit displace-
ment is treated as a 12-bit unsigned binary integer, and 52
zero bits are appended on the left. A 20-bit displacement is
treated as a 20-bit signed binary integer, and 44 bits equal to
the sign bit are appended on the left. The three are added as
64-bit binary numbers, ignoring overflow. The sum is
always 64 bits long and is used as an intermediate value to
form the generated address. The bits of the intermediate
value are numbered 0-63. A zero in any of the B1, B2, X2,
or B4 fields indicates the absence of the corresponding
address component. For the absent component, a zero is
used in forming the intermediate sum, regardless of the
contents of general register 0. A displacement of zero has no
special significance.

When an instruction description specifies that the contents
of a general register designated by an R field are used to
address an operand in storage, the register contents are used
as the 64-bit intermediate value.

An instruction can designate the same general register
both for address computation and as the location of an
operand. Address computation is completed before registers,
if any, are changed by the operation. Unless otherwise
indicated in an individual instruction definition, the gener-
ated operand address designates the leftmost byte of an
operand in storage.

The generated operand address is always 64 bits long, and
the bits are numbered 0- 63. The manner in which the
generated address is obtained from the intermediate value
depends on the current addressing mode. In the 24-bit
addressing mode, bits 0-39 of the intermediate value are
ignored, bits 0-39 of the generated address are forced to be
zeros, and bits 40-63 of the intermediate value become bits
40-63 of the generated address. In the 31-bit addressing
mode, bits 0-32 of the intermediate value are ignored, bits
0-32 of the generated address are forced to be zero, and bits
33-63 of the intermediate value become bits 33-63 of the
generated address. In the 64-bit addressing mode, bits 0-63
of the intermediate value become bits 0-63 of the generated
address. Negative values may be used in index and base-
address registers. Bits 0-32 of these values are ignored in the
31-bit addressing mode, and bits 0-39 are ignored in the
24-bit addressing mode.

For branch instructions, the address of the next instruction
to be executed when the branch is taken is called the branch
address. Depending on the branch instruction, the instruction
format may be RR, RRE, RX, RXY, RS, RSY, RSI, R], RIE,
or RIL. In the RS, RSY, RX, and RXY formats, the branch
address is specified by a base address, a displacement, and,
in the RX and RXY formats, an index. In these formats, the
generation of the intermediate value follows the same rules
as for the generation of the operand-address intermediate
value. In the RR and RRE formats, the contents of the
general register designated by the R2 field are used as the

US 9,459,872 B2

19

intermediate value from which the branch address is formed.
General register d cannot be designated as containing a
branch address. A value of zero in the R2 field causes the
instruction to he executed without branching.

The relative-branch instructions are in the RSI, RI, RIE,
and RIL formats. In the RSI, RI, and RIE formats for the
relative branch instructions, the contents of the 12 field ate
treated as a 16-bit signed binary integer designating a
number of halfwords. In the RIL format, the contents of the
12 field are treated as a 32-bit signed binary integer desig-
nating a number of halfwords. The branch address is the
number of halfwords designated by the 12 field added to the
address of the relative-branch instruction.

The 64-bit intermediate value for a relative branch
instruction in the RSI, RI, RIE, or RIL format is the sum of
two addends, with overflow from bit position 0 ignored. In
the RSI, RI, or RIE format, the first addend is the contents
of the 12 field with one zero bit appended on the right and
47 bits equal to the sign bit of the contents appended on the
left, except that for COMPARE AND BRANCH RELA-
TIVE, COMPARE IMMEDIATE AND BRANCH RELA-
TIVE, COMPARE LOGICAL AND BRANCH RELATIVE
and COMPARE LOGICAL IMMEDIATE AND BRANCH
RELATIVE, the first addend is the contents of the 14 field,
with bits appended as described above for the 12 field. In the
RIL format, the first addend is the contents of the 12 field
with one zero bit appended on the right and 31 bits equal to
the sign bit of the contents appended on the left. In all
formats, the second addend is the 64-bit address of the
branch instruction. The address of the branch instruction is
the instruction address in the PSW before that address is
updated to address the next sequential instruction, or it is the
address of the target of the EXECUTE instruction if
EXECUTE is used. If EXECUTE is used in the 24-bit or
31-bit addressing mode, the address of the branch instruc-
tion is the target address with 40 or 33 zeros, respectively,
appended on the left.

The branch address is always 64 bits long, with the bits
numbered 0-63. The branch address replaces bits 64-127 of
the current PSW. The manner in which the branch address is
obtained from the intermediate value depends on the
addressing mode, For those branch instructions which
change the addressing mode, the new addressing mode is
used. in the 24-bit addressing mode, bits 0-39 of the inter-
mediate value are ignored, bits 0-39 of the branch address
are made zeros, and bits 40-63 of the intermediate value
become bits 40-63 of the branch address. In the 31-bit
addressing mode, bits 0-32 of the intermediate value are
ignored, bits 0-32 of the branch address are made zeros, and
bits 33-63 of the intermediate value become bits 33-63 of the
branch address. In the 64-bit addressing mode, bits 0-63 of
the intermediate value become bits 0-63 of the branch
address.

For several branch instructions, branching depends on
satisfying a specified condition. When the condition is not
satisfied, the branch is not taken, normal sequential instruc-
tion execution continues, and the branch address is not used.
When a branch is taken, bits 0-63 of the branch address
replace bits 64-127 of the current PSW. The branch address
is not used to access storage as part of the branch operation.
A specification exception due to an odd branch address and
access exceptions due to fetching of the instruction at the
branch location are not recognized as part of the branch
operation but instead are recognized as exceptions associ-
ated with the execution of the instruction at the branch
location.

10

15

20

25

30

35

40

45

50

55

60

65

20

A branch instruction, such as BRANCH AND SAVE, can
designate the same general register for branch address
computation and as the location of an operand. Branch-
address computation is completed before the remainder of
the operation is performed.

The program-status word (PSW), described in Chapter 4
“Control” contains information required for proper program
execution. The PSW is used to control instruction sequenc-
ing and to hold and indicate the status of the CPU in relation
to the program currently being executed. The active or
controlling PSW is called the current PSW. Branch instruc-
tions perform the fir-rations of decision making, loop con-
trol, and subroutine linkage. A branch instruction affects
instruction sequencing by introducing a new instruction
address into the current PSW. The relative-branch instruc-
tions with a 16-bit 12 field allow branching to a location at
an offset of up to plus 64K-2 bytes or minus 64K bytes
relative to the location of the branch instruction, without the
use of a base register. The relative-branch instructions with
a 32-bit 12 field allow branching to a location at an offset of
up to plus 4G-2 bytes or minus 40 bytes relative to the
location of the branch instruction. without the use of a base
register.

Facilities for decision making are provided by the
BRANCH ON CONDITION, BRANCH RELATIVE ON
CONDITION, and BRANCH RELATIVE ON CONDI-
TION LONG instructions. These instructions inspect a con-
dition code that reflects the result of a majority of the
arithmetic, logical, and I/O operations. The condition code,
which consists of two bits, provides for four possible con-
dition-code settings: O, 1, 2, and 3.

The specific meaning of any setting depends on the
operation that sets the condition code. For example, the
condition code reflects such conditions as zero, nonzero, first
operand high, equal, overflow, and subchannel busy. Once
set, the condition code remains unchanged until modified by
an instruction that causes a different condition code to be set.

Loop control can he performed by the use of BRANCH
ON CONDITION, BRANCH RELATIVE ON CONDI-
TION, and BRANCH RELATIVE ON CONDITION LONG
to test the outcome of address arithmetic and counting
operations. For some particularly frequent combinations of
arithmetic and tests, BRANCH ON COUNT, BRANCH ON
INDEX HIGH, and BRANCH ON INDEX LOW OR
EQUAL are provided, and relative-branch equivalents of
these instructions are also provided. These branches, being
specialized, provide increased performance for these tasks.

Subroutine linkage when a change of the addressing mode
is not required is provided by the BRANCH AND LINK and
BRANCH AND SAVE instructions. (This discussion of
BRANCH AND SAVE applies also to BRANCH RELA-
TIVE AND SAVE and BRANCH RELATIVE AND SAVE
LONG.) Both of these instructions permit not only the
introduction of a new instruction address but also the
preservation of a return address and associated information.
The return address is the address of the instruction following
the branch instruction in storage, except that it is the address
of the instruction following an EXECUTE instruction that
has the branch instruction as its target.

Both BRANCH AND LINK and BRANCH AND SAVE
have an R1 field. They form a branch address by means of
fields that depend on the instruction. The operations of the
instructions are summarized as follows:

In the 24-bit addressing mode, both instructions place the

return address in bit positions 40-63 of general register
R1 and leave bits 0-31 of that register unchanged.
BRANCH AND LINK places the instruction-length

US 9,459,872 B2

21

code for the instruction and also the condition code and
program mask from the current PSW in bit positions
32-39 of general register R1 BRANCH AND SAVE
places zeros in those bit positions.

In the 31-bit addressing mode, both instructions place the
return address in bit positions 33-63 and a one in bit
position 32 of general register R1, and they leave bits
0-31 of the register unchanged.

In the 64-bit addressing mode, both instructions place the
return address in bit positions 0-63 of general register
R1. p1 In any addressing mode, both instructions
generate the branch address under the control of the
current addressing mode. The instructions place bits
0-63 of the branch address in bit positions 64-127 of the
PSW. In the RR format, both instructions do not
perform branching if the R2 field of the instruction is
Zero.

It can be seen that, in the 24-bit or 31-bit addressing
mode, BRANCH AND SAVE places the basic addressing-
mode bit, bit 32 of the PSW, in bit position 32 of general
register R1. BRANCH AND LINK does so in the 31-bit
addressing mode. The instructions BRANCH AND SAVE
AND SET MODE and BRANCH AND SET MODE are for
use when a change of the addressing mode is required during
linkage. These instructions have R1 and R2 fields. The
operations of the instructions are summarized as follows:

BRANCH AND SAVE AND SET MODE sets the con-
tents of general register R1 the same as BRANCH
AND SAVE. in addition, the instruction places the
extended-addressing-mode bit, bit 31 of the PSW, in bit
position 63 of the register.

BRANCH AND SET MODE, if R1 is nonzero, performs
as follows. In the 24- or 31-bit mode, it places bit 32 of
the PSW in bit position 32 of general register R1, and
it leaves bits 0-31 and 33-63 of the register unchanged.
Note that bit 63 of the register should be zero if the
register contains an instruction address. in the 64-bit
mode, the instruction places bit 31 of the PSW (a one)
in bit position 63 of general register R1, and it leaves
bits 0-62 of the register unchanged.

When R2 is nonzero, both instructions set the addressing
mode and perform branching as follows. Bit 63 of
general register R2 is placed in bit position 31 of the
PSW. If bit 63 is zero, bit 32 of the register is placed in
bit position 32 of the PSW. If bit 63 is one, PSW bit 32
is set to one. Then the branch address is generated from
the contents of the register, except with bit 63 of the
register treated as a zero, under the control of the new
addressing mode. The instructions place bits 0-63 of the
branch address in bit positions 64-127 of the PSW. Bit
63 of general register R2 remains unchanged and,
therefore, may he one upon entry to the called program.
If R2 is the same as R1, the results in the designated
general register are as specified for the R1 register.

Interruptions (Context Switch):

The interruption mechanism permits the CPU to change
its state as a result of conditions external to the configura-
tion, within the configuration, or within the CPU itself. To
permit fast response to conditions of high priority and
immediate recognition of the type of condition, interruption
conditions are grouped into six classes: external, input/
output, machine check, program, restart, and supervisor call.

An interruption consists in storing the current PSW as an
old PSW, storing information identifying the cause of the
interruption, and fetching a new PSW, Processing resumes
as specified by the new PSW. The old PSW stored on an
interruption normally contains the address of the instruction

25

35

40

45

55

22

that would have been executed next had the interruption not
occurred, thus permitting resumption of the interrupted
program. For program and supervisor-call interruptions, the
information stored also contains a code that identifies the
length of the last-executed instruction, thus permitting the
program to respond to the cause of the interruption. In the
case of some program conditions for which the normal
response is re-execution of the instruction causing the inter-
ruption, the instruction address directly identifies the
instruction last executed.

Except for restart, an interruption can occur only when the
CPU is in the operating state. The restart interruption can
occur with the CPU in either the stopped or operating state.

Any access exception is recognized as part of the execu-
tion of the instruction with which the exception is associ-
ated. An access exception is not recognized. when the CPU
attempts to prefetch from an unavailable location or detects
some other access-exception condition, but a branch instruc-
tion or an interruption changes the instruction sequence such
that the instruction is not executed. Every instruction can
cause an access exception to be recognized because of
instruction fetch. Additionally, access exceptions associated
with instruction execution may occur because of an access
to an operand in storage. An access exception due to fetching
an instruction is indicated when the first instruction halfword
cannot be fetched without encountering the exception. When
the first halfword of the instruction has no access exceptions,
access exceptions may be indicated for additional halfwords
according to the instruction length specified by the first two
bits of the instruction; however, when the operation can be
performed without accessing the second or third halfwords
of the instruction, it is unpredictable whether the access
exception is indicated for the unused part. Since the indi-
cation of access exceptions for instruction fetch is common
to all instructions, it is not covered in the individual instruc-
tion definitions.

Except where otherwise indicated in the individual
instruction description, the following rules apply for excep-
tions associated with an access to an operand location. For
a fetch-type operand, access exceptions are necessarily
indicated only for that portion of the operand which is
required for completing the operation. It is unpredictable
whether access exceptions are indicated for those portions of
a fetch-type operand which are not required for completing
the operation.

For a store-type operand, access exceptions are recog-
nized for the entire operand even if the operation could he
completed without the use of the inaccessible part of the
operand. In situations where the value of a store-type
operand is defined to be unpredictable, it is unpredictable
whether an access exception is indicated. Whenever an
access to an operand location can cause an access exception
to be recognized, the word “access” is included. in the list of
program exceptions in the description of the instruction.
This entry also indicates which operand can cause the
exception to he recognized and whether the exception is
recognized on a fetch or store access to that operand
location. Access exceptions are recognized only for the
portion of the operand as defined for each particular instruc-
tion.

An operation exception is recognized when the CPU
attempts to execute an instruction with an invalid operation
code. The operation code may he unassigned, or the instruc-
tion with that operation code may not be installed on the
CPU, The operation is suppressed. The instruction-length
code is 1, 2, or 3. The operation exception is indicated by a

US 9,459,872 B2

23

program interruption code of 0001 hex (or 0081 hex if a

concurrent PER event is indicated).

Some models may offer instructions not described in this
publication, such as those provided for assists or as part of
special or custom features. Consequently, operation codes
not described in this publication do not necessarily cause an
operation exception to be recognized. Furthermore, these
instructions may cause modes of operation to be set up or
may otherwise alter the machine so as to affect the execution
of subsequent instructions. To avoid causing such an opera-
tion, an instruction with an operation code not described in
this publication should be executed only when the specific
function associated with the operation code is desired.

A specification exception is recognized when any of the
following is true:

1. A one is introduced into an unassigned bit position of the
PSW (that is, any of bit positions 0, 2-4, 24-30, or 33-63).
This is handled as an early PSW specification exception.

2. A one is introduced into bit position 12 of the PSW. This
is handled as an early PSW specification exception.

3. The PSW is invalid in any of the following ways: a. Bit
31 of the PSW is one and bit 32 is zero. b. Bits 31 and 32
of the PSW are zero, indicating the 24-bit addressing
mode, and bits 64-103 of the PSW are not all zeros. c. Bit
31 of the PSW is zero and bit 32 is one, indicating the
31-bit addressing mode, and bits 64-96 of the PSW are not
all zeros. This is handled as an early PSW specification
exception.

4. The PSW contains an odd instruction address.

5. An operand address does not designate an integral bound-
ary in an instruction requiring such integral-boundary
designation.

6. An odd-numbered general register is designated by an R
field of an instruction that requires an even-numbered
register designation.

7. A floating-point register other than 0, 1, 4, 5, 8, 9, 12, or
13 is designated for an extended operand.

8. The multiplier or divisor in decimal arithmetic exceeds 15
digits and sign.

9. The length of the first-operand field is less than or equal
to the length of the second-operand field in decimal
multiplication or division.

10. Execution of CIPHER MESSAGE, CIPHER MES-
SAGE WITH CHAINING, COMPUTE INTERMEDI-
ATE MESSAGE DIGEST, COMPUTE LAST MES-
SAGE DIGEST, or COMPUTE MESSAGE
AUTHENTICATION CODE is attempted, and the func-
tion code in bits 57-63 of general register 0 contain an
unassigned or uninstalled function code.

11. Execution of CIPHER MESSAGE or CIPHER MES-
SAGE WITH CHAINING is attempted, and the R1 or R2
field designates an odd-numbered register or general
register 0.

12. Execution of CIPHER MESSAGE, CIPHER MES-
SAGE WITH CHAINING, COMPUTE INTERMEDI-
ATE MESSAGE DIGEST or COMPUTE MESSAGE
AUTHENTICATION CODE is attempted, and the second
operand length is not a multiple of the data block size of
the designated function. This specification-exception con-
dition does not apply to the query functions.

13. Execution of COMPARE AND FORM CODEWORD is
attempted, and general registers 1, 2, and 3 do not initially
contain even values.

32. Execution of COMPARE AND SWAP AND STORE is
attempted and any of the following conditions exist:
The function code specifies an unassigned value.

The store characteristic specifies an unassigned value.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

The function code is 0, and the first operand is not
designated on a word boundary.

The function code is 1, and the first operand is not
designated on a doubleword boundary.

The second operand is not designated on an integral
boundary corresponding to the size of the store value.

33. Execution of COMPARE LOGICAL LONG UNICODE
or MOVE LONG UNICODE is attempted, and the con-
tents of either general register R1+1 or R3+1 do not
specify an even number of bytes.

34. Execution of COMPARE LOGICAL STRING, MOVE
STRING or SEARCH STRING is attempted, and bits
32-55 of general register 0 are not all zeros.

35. Execution of COMPRESSION CALL is attempted, and
bits 48-51 of general register 0 have any of the values
0000 and 0110-1111 binary.

36. Execution of COMPUTE INTERMEDIATE MESSAGE
DIGEST, COMPUTE LAST MESSAGE DIGEST, or
COMPUTE MESSAGE AUTHENTICATION CODE is
attempted, and either of the following is true:

The R2 field designates an odd-numbered register or
general register 0.
Bit 56 of general register 0 is not zero.

37. Execution of CONVERT IMP TO BFP, CONVERT TO
FIXED (BFP or HFP), or LOAD FP INTEGER (BFP) is
attempted, and the M3 field does not designate a valid
modifier.

38. Execution of DIVIDE TO INTEGER is attempted, and
the M4 field does not designate a valid modifier.

39. Execution of EXECUTE is attempted, and the target
address is odd.

40. Execution of EXTRACT STACKED STATE is
attempted, and the code in bit positions 56-63 of general
register R2 is greater than 4 when the ASN-and-L.X-reuse
facility is not installed or is greater than 5 when the
facility is installed.

41. Execution of FIND LEFTMOST ONE is attempted, and
the R1 field designates an oddnumbered register.

42. Execution of INVALIDATE DAT TABLE ENTRY is
attempted, and bits 44-51 of general register R2 are not all
Zeros.

43. Execution of LOAD FPC is attempted, and one or more
bits of the second operand corresponding to unsupported
bits in the FPC register are one.

44. Execution of LOAD PAGE-TABLE-ENTRY ADDRESS
is attempted and the M4 field of the instruction contains
any value other than 0000-0100 binary.

45. Execution of LOAD PSW is attempted and bit 12 of the
doubleword at the second-operand. address is zero. It is
model dependent whether or not this exception is recog-
nized.

46. Execution of MONITOR CALL is attempted, and bit
positions 8-11 of the instruction do not contain zeros.
47. Execution of MOVE PAGE is attempted, and bit posi-
tions 48-51 of general register 0 do not contain zeros or

bits 52 and 53 of the register are both one.

48. Execution of PACK ASCII is attempted, and the 1.2 field
is greater than 31.

49. Execution of PACK UNICODE is attempted, and the [.2
field is greater than 63 or is even.

50. Execution of PERFORM FLOATING POINT OPERA-
TION is attempted, bit 32 of general register 0 is zero, and
one or more fields in bits 33-63 are invalid or designate an
uninstalled function.

51. Execution of PERFORM LOCKED OPERATION is
attempted, and any of the following is true:

US 9,459,872 B2

25

The T bit, bit 55 of general register 0 is zero, and the
function code in bits 56-63 of the register is invalid.

Bits 32-54 of general register 0 are not all zeros.

In the access-register mode, for function codes that cause
use of a parameter list containing an ALET, the R3 field
is zero.

52. Execution of PERFORM TIMING FACILITY FUNC-
TION is attempted, and either of the following is true:
Bit 56 of general register 0 is not zero.

Bits 57-63 of general register 0 specify an unassigned or
uninstalled function code.

53. Execution of PROGRAM TRANSFER or PROGRAM
TRANSFER WITH INSTANCE is attempted, and all of
the following are true:

The extended-addressing-mode bit in the PSW is zero.

The basic-addressing-mode bit, bit 32, in the general
register designated by the R2 field of the instruction is
Zero.

Bits 33-39 of the instruction address in the same register
are not all zeros.

54. Execution of RESUME PROGRAM is attempted, and
either of the following is true:

Bits 31, 32, and 64-127 of the PSW field in the second
operand are not valid for placement in the current PSW.
The exception is recognized if any of the following is
true:

Bits 31 and 32 are both zero and bits 64-103 are not all
Zeros.

Bits 31 and 32 are zero and one, respectively, and bits
64-96 are not all zeros.

Bits 31 and 32 are one and zero, respectively.

Bit 127 is one.

Bits 0-12 of the parameter list are not all zeros.

55. Execution of SEARCH STRING UNICODE is
attempted, and bits 32-47 of general register 0 are not all
Zeros.

56. Execution of SET ADDRESS SPACE CONTROL or
SET ADDRESS SPACE CONTROL FAST is attempted,
and bits 52 and 53 of the second-operand address are not
both zeros.

57. Execution of SET ADDRESSING MODE (SAM24) is
attempted, and bits 0-39 of the un-updated instruction
address in the PSW, bits 64-103 of the PSW, are not all
Zeros.

58. Execution of SET ADDRESSING MODE (SAM31) is
attempted, and bits 0-32 of the un-updated instruction
address in the PSW, bits 64-96 of the PSW, are not all
Zeros.

59. Execution of SET CLOCK PROGRAMMABLE FIELD
is attempted, and bits 32-47 of general register 0 are not
all zeros.

60. Execution of SET FPC is attempted, and one or more bits
of the first operand corresponding to unsupported bits in
the FTC register are one.

61. Execution of STORE SYSTEM INFORMATION is
attempted, the function code in general register 0 is valid,
and either of the following is true:

Bits 36-55 of general register 0 and bits 32-47 of general
register 1 are not all zeros.

The second-operand address is not aligned on a 4K-byte
boundary.

62. Execution of TRANSLATE TWO TO ONE or TRANS-
LATE TWO TO TWO is attempted, and the length in
general register R,,; does not specify an even number of
bytes.

63. Execution of UNPACK ASCII is attempted, and the L1
field is greater than 31.

20

25

30

40

45

55

65

26

64. Execution of UNPACK UNICODE is attempted, and the
L1 field is greater than 63 or is even.

65. Execution of UPDATE TREE is attempted, and the
initial contents of general registers 4 and 5 are not a
multiple of 8 in the 24-bit or 31-bit addressing mode or
are not a multiple of 16 in the 64-bit addressing mode. The
execution of the instruction identified by the old PSW is
suppressed. However, for early PSW specification excep-
tions (causes 1-3) the operation that introduces the new
PSW is completed, but an interruption occurs immedi-
ately thereafter. Preferably, the instruction-length code
(ILC) is 1, 2, or 3, indicating the length of the instruction
causing the exception. When the instruction address is
odd (cause 4 on page 6-33), it is unpredictable whether the
ILC is 1, 2, or 3. When the exception is recognized
because of an early PSW specification exception (causes
1-3) and the exception has been introduced by LOAD
PSW, LOAD PSW EXTENDED, PROGRAM RETURN,
or an interruption, the ILC is 0. When the exception is
introduced by SET ADDRESSING MODE (SAM24,
SAM31), the ILC is 1, or it is 2 if SET ADDRESSING
MODE was the target of EXECUTE. When the exception
is introduced by SET SYSTEM MASK or by STORE
THEN OR SYSTEM MASK, the ILC is 2.

Program interruptions are used to report exceptions and
events which occur during execution of the program. A
program interruption causes the old PSW to be stored at real
locations 336-351 and a new PSW to be fetched from real
locations 464-479. The cause of the interruption is identified
by the interruption code. The interruption code is placed at
real locations 142-143, the instruction-length code is placed
in bit positions 5 and 6 of the byte at real location 141 with
the rest of the bits set to zeros, and zeros are stored at real
location 140. For some causes, additional information iden-
tifying the reason for the interruption is stored at real
locations 144-183. If the PER-3 facility is installed, then, as
part of the program interruption action, the contents of the
breaking-event-address register are placed in real storage
locations 272-279. Except for PER events and the crypto-
operation exception, the condition causing the interruption is
indicated by a coded value placed in the rightmost seven bit
positions of the interruption code. Only one condition at a
time can be indicated. Bits 0-7 of the interruption code are
set to zeros. PER events are indicated by setting bit 8 of the
interruption code to one. When this is the only condition,
bits 0-7 and 9-15 are also set to zeros. When a PER event is
indicated concurrently with another program interruption
condition, bit 8 is one, and bits 0-7 and 9-15 are set as for
the other condition. The crypto-operation exception is indi-
cated by an interruption code of 0119 hex, or 0199 hex if a
PER event is also indicated.

When there is a corresponding mask bit, a program
interruption can occur only when that mask bit is one. The
program mask in the PSW controls four of the exceptions,
the IEEE masks in the FPC register control the IEEE
exceptions, bit 33 in control register 0 controls whether SET
SYSTEM MASK causes a special-operation exception, bits
48-63 in control register 8 control interruptions due to
monitor events, and a hierarchy of masks control interrup-
tions due to PER events. When any controlling mask bit is
zero, the condition is ignored; the condition does not remain
pending.

When the new PSW for a program interruption has a
PSW-format error or causes an exception to he recognized in
the process of instruction fetching, a string of program
interruptions may occur.

US 9,459,872 B2

27

Some of the conditions indicated as program exceptions
may be recognized also by the channel subsystem, in which
case the exception is indicated in the subchannel-status word
or extended-status word.

When a data exception causes a program interruption, a
data-exception code (DXC) is stored at location 147, and
zeros are stored at locations 144-146. The DXC distin-
guishes between the various types of data-exception condi-
tions. When the APP-register (additional floating-point reg-
ister) control bit, bit 45 of control register 0, is one, the DXC
is also placed in the DXC field of the floating-point-control
(FPC) register. The DXC field in the FPC register remains
unchanged when any other program exception is reported.
The DXC is an 8-bit code indicating the specific cause of a
data exception.

DXC 2 and 3 are mutually exclusive and are of higher
priority than any other DXC. Thus, for example, DXC 2
(BFP instruction) takes precedence over any IEEE excep-
tion, and DXC 3 (DFP instruction) takes precedence over
any IEEE exception or simulated IEEE exception. As
another example, if the conditions for both DXC 3 (DFP
instruction) and DXC 1 (AFP register) exist, DXC 3 is
reported. When both a specification exception and an AFP
register data exception apply, it is unpredictable which one
is reported.

An addressing exception is recognized when the CPU
attempts to reference a main-storage location that is not
available in the configuration. A main-storage location is not
available in the configuration when the location is not
installed, when the storage unit is not in the configuration, or
when power is off in the storage unit. An address designating
a storage location that is not available in the configuration is
referred to as invalid. The operation is suppressed when the
address of the instruction is invalid. Similarly, the operation
is suppressed when the address of the target instruction of
EXECUTE is invalid. Also, the unit of operation is sup-
pressed when an addressing exception is encountered in
accessing a table or table entry. The tables and table entries
to which the rule applies are the dispatchable-unit-control
table, the primary ASN second- table entry, and entries in the
access list, region first table, region second table, region
third table, segment table, page table, linkage table, linkage-
first table, linkage-second table, entry table, ASN first table,
ASN second table, authority table, linkage stack, and trace
table, Addressing exceptions result in suppression when they
are encountered for references to the region first table,
region second table, region third table, segment table, and
page table, in both implicit references for dynamic address
translation and references associated with the execution of
LOAD PAGE-TABLE-ENTRY ADDRESS, LOAD REAL
ADDRESS, STORE REAL ADDRESS, and TEST PRO-
TECTION. Similarly, addressing exceptions for accesses to
the dispatchable-unit control table, primary ASN-second-
table entry, access list, ASN second table, or authority table
result in suppression when they are encountered in access-
register translation done either implicitly or as part of LOAD
PAGE-TABLE-ENTRY ADDRESS, LOAD REAL
ADDRESS, STORE REAL ADDRESS, TEST ACCESS, or
TEST PROTECTION. Except for some specific instructions
whose execution is suppressed, the operation is terminated
for an operand address that can be translated but designates
an unavailable location. For termination, changes may occur
only to result fields. In this context, the term “result field”
includes the condition code, registers, and any storage
locations that are provided and that are designated to he
changed by the instruction.

30

40

45

28

The forgoing is useful in understanding the terminology
and structure of one computer system embodiment. Embodi-
ments not limited to the z/Architecture or to the description
provided thereof. Embodiments can be advantageously
applied to other computer architectures of other computer
manufacturers with the teaching herein.

Different processor architectures provide a limited num-
ber of general registers (GRs), sometimes referred to as
general purpose registers, that are explicitly (and/or identi-
fied by instructions of the architected instruction set. IBM
7/Architecture and its predecessor architectures (dating,
back to the original System 360 circa.1964) provide 16
general registers (GRs) for each central processing unit
(CPU). GRs may be used by processors (central processing
unit (CPU)) instructions as follows:

As a source operand of an arithmetic or logical operation.

As a target operand of an arithmetic or logical operation.

As a the address of a memory operand (either a base

register, index register, or directly)

As the length of a memory operand

Other uses such as providing a function code or other

information to and from an instruction.

Until the introduction of the IBM z/Architecture main-
frame in 2000, a mainframe general register consisted of 32
bits; with the introduction of z/Architecture, a general reg-
ister consisted of 64 bits, however, for compatibility reasons,
many z/Architecture instructions continue to support 32 bits.

Similarly, other architectures, such as the x86 from Intel®
for example, provide compatibility modes such that a cur-
rent machine, having, for example 32 bit registers, provide
modes for instructions to access only the first 8 bits or 16 bits
of the 32 bit GR.

Even in early IBM System 360 environments, 16 registers
(identified by a 4 bit register field in an instruction for
example) proved to be daunting to assembler programmers
and compiler designers. A moderately-size program could
require several base registers to address code and data,
limiting the number of registers available to hold active
variables. Certain techniques have been used to address the
limited number of registers:

Program design (as simple as modular programming)

helped to minimize base-register overutilization,

Compilers have used techniques such as register “color-

ing” to manage the dynamic reassignment of registers.

Base register usage can be reduced with the following:

Newer arithmetic and logical instructions with imme-
diate constants (within the instruction),

Newer instructions with relative-immediate operand
addresses.

Newer instructions with long displacements.

However, there remains constant register pressure when
there are more live variables and addressing scope than can
be accommodated by the number of registers in the CPU.

7/Architecture provides three program-selectable address-
ing modes: 24-; 31-, and 64-bit addressing. However, for
programs that neither require 64-bit values nor exploit 64-bit
memory addressing, having 64-bit GRs is of limited benefit.
The following disclosure describes a technique of exploiting
64-bit registers for programs that do not generally use 64-bit
addressing or variables.

Within this disclosure, a convention is used where bit
positions of registers are numbered in ascending order from
left to right (Big Endian). In a 64-bit register, bit 0 (the
leftmost bit) represents the most significant value (2°%) and
bit 63 (the rightmost bit) represents the least significant
value (2°). The leftmost 32 bits of such a register (bits 0-31)

US 9,459,872 B2

29
are called the high word, and the rightmost 32 bits of the
register (bits 32-63) are called the low word where a word
is 32 bits.
High-Word Facility:

A new suite of general instructions (that is, instructions
available to an application program) is introduced to exploit
the high word. (the most-significant 32 bits) of a 64-bit
general register when the CPU is in 32 bit mode. The
program can employ the new instructions to access the
hidden (previously unavailable) high words of the GPR in
addition to the old instructions which continue to be
restricted. to the low words.

Referring to FIG. 18, a program written to an architecture
having 16 or 32 bit registers may be run on a newer version
of the architecture supporting 64 bit registers. The program
written for, say, a 32 bit mode is only aware of 32 bit
registers, and typically 32 or fewer logical address bits. An
Operating System (OS) 801 in a 64 bit architected computer
system may support programs written for 64 bit mode 803
as well as programs written for 32 bit mode 802. A context
switch operation 804 in such a machine will save 805 the 64
bit registers as well as the Program Status Word (PSW) when
switching between programs and/or the operating system
independent of whether the Application program 802 803
was in 32 or 64 bit mode. Thus, a 32 bit program running in
32 bit mode on a 64 bit machine under control of a 64 bit
operating system, will have its registers saved and restored
during certain context switches. The computer system and
operating system may actually save and restore 805 all 64
bits of the general registers during the context switch, even
though the program subject to the context switch is running
in a 32 bit mode. Thus, the program sees only half of the
registers, only 32 bits of the 64 bits of each register. The
other 32 bits of the implemented registers is “hidden” from
the 32 bit program. The 32 bits of the known registers, may
be used for addressing, and even though the computer
system supports 64 bits of addressing, the OS can manage
via Dynamic Address Translation, such that only 32 bits of
address are manipulated by the 32 bit program in 32 bit
mode. The 32 bit mode may be thought of as a low-word
mode since the program is only utilizing the low word (32
bit word) of a double word (64 bit) register. An Application
Program operates under control of the OS, and invokes the
OS in order to have the OS perform certain functions, This
“invoking” is performed by the context switch 804 that
saves state of the application program and loads state 805 of
the OS to be performed, where the OS begins execution at
the address provided by the context switch. The OS can then
invoke one of the application programs by a context switch
804 to permit the application program to run. In some
applications, use of resources is supported by permitting
each application, a time-slice of operation and a context
switch 804 is used to “interrupt” the active program after an
elapsed time in order to permit the OS to dispatch another
application program for another time-slice.

The availability of the High-Word facility may be con-
trolled by a bit or a field in the machine that must be set to
enable the High-Word facility. When the High Word facility
is enabled, the 32 bit program can take advantage of the
“hidden” part of the register by executing new “high-word
facility” instructions. Other new ‘“high-word facility”
instructions may be provided that provide new function to
instructions using low-word registers.

In most of these instructions, only the high word of the
registers is manipulated. In certain instructions, variants are
provided to manipulate the high word of one source register
with the low word of another source register, the result being

10

15

20

25

30

35

40

45

50

55

60

65

30

placed in the high word of a target register (e.g., AHHLR).
RISBLG provides a low-word analog to the high-word
RISBHIG instruction. RISBHG and RISBLG provide great
flexibility in implementing a number of pseudo-instructions
(with assistance from the assembler program).

As mentioned above, processor architectures employ
General Purpose Registers (GPRs), available to the Instruc-
tion Set of the architecture. A program can take advantage of
data being in the GPRs, which may be implemented in high
speed memory such as embedded latches on a chip, for faster
performance than having the data in slower main store,
which is often implemented by complex dynamic address
translation mechanisms. In some architectures such as x86
having 64 GPRs, the size of each GPR has been increased
evolutionary from 8 bits to 16 bits, 32 bits and currently 64
bits. However the number of GPRs available to an instruc-
tion ((64 for x86) determined by a number of bits (6 for x86)
of a GPR field within an instruction) remains the same so
that programs written for an older instruction having 8 bit
GPRs for example, will still run on newer architectures
having 32 bit GPRs for example. Thus, a machine having 32
bit GPRs operating in 8 bit mode, will provide access to only
the lower 8 bits of each 32 bit GPR. However, during a
context switch, the 32 bit Operating System (OS) will
always save and restore the full 32 bits of each GPR.

In an IBM z/Architecture implementation, a machine may
have 16 GPRs, each GPR consisting of 64 bits (bits 0-63) but
may run an application program written for 32 bit registers
in 32 bit mode. The 32 bits may be the low order 32 bits of
the GPR (bits 32-63), where the high order 32 bits (bits 0-31)
are not available (hidden) in a 32 bit mode of operation. The
application program has no way of utilizing the high order
32 bits of the GPRs as they are invisible to the program. The
application program, in an example, may have been written
for a 32 bit machine of a prior generation of the machine
having only 32 bit registers and addressing 24 or 32 bits of
logical addresses to memory. The 32 bit mode enables the
example 32 bit application program to run on a newer
machine having an architecture supporting 64 bits of GPRs,
having a 64 bit Operating System (OS) and supporting 64 bit
application programs in 64 bit mode. In another machine
architecture defined for 32 bit GPRs, a set of 32 bit “hidden
GPRs” may be provided that are invisible to application
programs.

A “High-Word Facility mode” is provided that enables a
subset of instructions to access the hidden or High Order
GPR.s, while the remaining set of instructions have access
to the architected or Low Order GPRs.

Preferably, in “High-Word Facility mode”, the subset of
instructions may only access the High Order GPRs in one
implementation, but in another implementation, the subset
of instructions may define GPR field as being directed to the
High Order GPRs and another GPR field as being directed
to the low order GFRs.

In another preferred implementation, in “High-Word
Facility mode”, only low order GPRs can be used for
generating main memory addresses.

In an implementation, applications executing in “High-
Word Facility mode” can co-exist with applications not
executing in “High-Word Facility mode”. The applications
not in High-Word Facility mode may be 32 bit GPR appli-
cations or 64 bit GPR applications. In this example, GPRs of
a machine are utilized having 64 bits with applications
written for GPRs utilizing 32 bits, however, the present
embodiments would provide advantage in GPRs of a
machine with any number of bits (16, 24, 32, 48, 64, 128)
running applications written for GPRs having fewer number

US 9,459,872 B2

31

of bits (8, 16, 24, 32, 48, 64). Furthermore, High-Word
Facility mode hidden registers may utilize only a designated
portion of the hidden GPRs, such that, in the 32 bit appli-
cation program of the previous example, the hidden registers
available in High-Word Facility mode for some instructions
may be the low order 8 or 16 bits of the high order 32 bits
of the 64 bit GPRs, while other hidden registers may he the
high order 8 or 16 bits of the high order 32 bits of the 65 bit
GPRs for example. The teaching of embodiments is pre-
sented using 7/Architecture and/or x86 architecture, how-
ever, other implementations are readily apparent to one of
average skill, in light of the teaching herein.

In an example z/Architecture embodiment, for selected
32-bit instructions, the high-word facility effectively pro-
vides sixteen additional 32-bit registers (high word registers)
by utilizing previously unavailable high order bits 0-31 of
the sixteen 64-bit general registers (bits 0-63). In an embodi-
ment, the High-Word facility may enable the following
instructions with mnemonics indicating the function (AH-
HHR for ADD HIGH for example)

ADD HIGH (AHHHR, AHHLR)

ADD IMMEDIATE HIGH (AIH)

ADD LOGICAL HIGH (ALHHHR, ALHHHER)

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH

(ALSIH, ALSIHN)

BRANCH RELATIVE ON COUNT HIGH (BRCTH)

COMPARE HIGH (CHHR, CHLR, CHF)

COMPARE IMMEDIATE HIGH (CIH)

COMPARE LOGICAL HIGH (CLHHR, CLHLR, CLHF)

COMPARE LOGICAL IMMEDIATE HIGH (CLIH)

LOAD BYTE HIGH (LBH)

LOAD HALFWORD HIGH (LHH)

LOAD HIGH (LFH)

LOAD LOGICAL CHARACTER HIGH (LLCH)

LOAD LOGICAL HALFWORD HIGH (LLHH)

ROTATE THEN INSERT SELECTED BITS HIGH (RIS-

BHG)
ROTATE THEN INSERT SELECTED BITS LOW (RIS-
BLG)

STORE CHARACTER HIGH (STCH)

STORE HALFWORD HIGH (STHH)

STORE HIGH (STFH)

SUBTRACT HIGH (SHHHR, SHHLR)

SUBTRACT LOGICAL HIGH (SLHHHR, SLHHLR)

The following additional general instructions may be
available when the interlocked-access facility is installed:

LOAD AND ADD (LAA, LAAG)

LOAD AND ADD LOGICAL (LAAL, LAALG)

LOAD AND AND (LAN, LANG)

LOAD AND EXCLUSIVE OR (LAX, LAXG)

LOAD AND OR (LAO, LAOG)

LOAD PAIR DISJOINT (LPD, LPDG)

The following additional general instructions may be
available when the load/store-on-condition facility is
installed:

LOAD ON CONDITION (LOC, LGOC, LGROC,

LROC)

STORE ON CONDITION (STOC, STGOC)

The following additional general instructions may be
available when the distinct-operands facility is installed

ADD (ARK, AGRK)

ADD IMMEDIATE (AHIK, AGHIK)

ADD LOGICAL (ALRK, ALGRK)

ADD LOGICAL WITH SIGNED IMMEDIATE (ALH-

SIK, ALGHSIK)
AND (NRK, NGRK)
EXCLUSIVE OR (XRK, XGRK)

20

25

30

40

45

55

65

32

OR (ORK, OGRK)

SHIFT LEFT SINGLE (SLAK)

SHIFT LEFT SINGLE LOGICAL (SLLK)

SHIFT RIGHT SINGLE (SRAK)

SHIFT RIGHT SINGLE LOGICAL (SRLK)

SUBTRACT (SRK, SGRK)

SUBTRACT LOGICAL (SLRK, SLGRK)

Example High-Word Instructions:

The following are example instructions that may employ
the High-Word facility.
Add High (RRF Format)

When the instruction is executed by the computer system,
the second operand is added to the third operand, and the
sum is placed at the first-operand location. The operands and
the sum are treated as 32-bit signed binary integers. The first
and second operands are in bits 0-31 of general registers R1
and R2, respectively; bits 32-63 of general register R1 are
unchanged, and bits 32-63 of general register R2 are
ignored. For AHHHR OpCode, the third operand is in bits
0-31 of general register R3; bits 32-63 of the register are
ignored. For AHHLR OpCode, the third operand is in bits
32-63 of general register R3: bits 0-31 of the register are
ignored. When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and ignoring
any carry out of the sign-bit position, and condition code 3
is set. If the fixed-point-overflow mask is one, a program
interruption for fixed-point overflow occurs.

Resulting Condition Code:

0 Result zero; no overflow

1 Result less than zero; no overflow

2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

Fixed-point overflows

Operation if the high-word facility is not installed)
Add Immediate High (RIL Format)

When the instruction is executed by the computer system,
the second operand is added to the first operand, and the sum
is placed at the first-operand location. The operands and the
sum are treated as 32-bitsigned binary integers. The first
operand is in bits 0-31 of general register R1; bits 32-63 of
the register are unchanged. When there is an overflow, the
result is obtained by allowing any carry into the sign-bit
position and ignoring any carry out of the sign-bit position,
and condition code 3 is set. If the fixed-point-overflow mask
is one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow

1 Result less than zero: no overflow

2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

Fixed-point overflow

Operation (if the high-word facility is not installed)
Add Logical High (RRF Format)

When the instruction is executed by the computer system,
the second operand is added to the third operand, and the
sum is placed at the first-operand location. The operands and
the sum are treated as 32-bitunsigned binary integers. The
first and second operands are in bits 0-31 of general registers
R1 and R2, respectively; bits 32-63 of general register R1
are unchanged, and bits 32-63 of general register R2 are
ignored. For ALHHHHR OpCode, the third operand is in
bits 0-31 of general register R3; bits 32-63 of the register are

US 9,459,872 B2

33

ignored. For ALHHLR Opcode the third operand is in bits

32-63 of general register R3; bits 0-31 of the register are

ignored.

Resulting Condition Code:

0 Result zero; no carry

1 Result not zero; no carry

2 Result zero carry

3 Result not zero; carry

Program Exceptions:

Operation (if the high-word facility is not installed)

ADD Logical with Signed Immediate High (RIL, Format)
When the instruction is executed by the computer system,

the second operand is added to the first operand, and the sum

is placed at the first-operand location. The first operand and
the sum are treated as 32-bitunsigned binary integers. The
second operand is treated as a 32-bit signed binary integer.

The first operand is in bits 0-31 of general register R1; bits

32-63 of the register are unchanged.

Resulting Condition Code:

For ALSIH, the code is set as follows:

0 Result zero; no carry

1 Result not zero; no carry

2 Result zero; carry

3 Result not zero; carry

For ALSIHN, the code remains unchanged.

Program Exceptions:

Operation (if the high-word facility is not installed)

Branch Relative on Count High (RI, RIL Format)

When the instruction is executed by the computer system,

A one is subtracted from the first operand, and the result is
placed at the first-operand location. For BRANCH RELA-
TIVE ON COUNT (BRCT OpCode), the first operand and
result are treated as 32-bit binary integers in bits 32-63 of
general register R1, with overflow ignored; bits 0-31 of the
register are unchanged. For BRANCH RELATIVE ON
COUNT HIGH (BRCTH OpCode), the first operand and
result are treated as 32-bitbinary integers in bits 0-31 of
general register R1, with overflow ignored; bits 32-63 of the
register are unchanged. For BRANCH RELATIVE ON
COUNT (BRCTG OpCode), the first operand and result are
treated as 64-bit binary integers, with overflow ignored.
When the result is zero, normal instruction sequencing
proceeds with the updated instruction address. When the
result is not zero, the instruction address in the current PSW
is replaced by the branch address. The contents of the 12 field
are a signed binary integer specifying the number of half-
words that is added to the address of the instruction to
generate the branch address.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (BRCTH, if the high-word facility is not
installed)
Programming Notes:

1. The operation is the same as that of the BRANCH ON
COUNT instruction except for the means of specifying
the branch address.

2. The first operand and result can be considered as either
signed or unsigned binary integers since the result of a
binary subtraction is the same in both cases.

3. An initial count of one results in zero, and no branching
takes place; an initial count of zero results in -1 and
causes branching to be executed; an initial count of -1
results in -2 and causes branching to be executed; and so
on. In a loop, branching takes place each time the instruc-
tion is executed until the result is again zero.

Note that for BRCT, because of the number range, an
initial count of -231 results in a positive value of 231-1, or,

10

15

20

25

30

35

40

45

50

55

60

65

34

for BRCTG, an initial count of -263 results in a positive
value of 263-1.4. When the instruction is the target of an
execute type instruction, the branch is relative to the target
address;

Compare High (RRE, RXY format), Compare Immediate
High (RIL Format)

When the instruction is executed by the computer system,
the first operand is compared with the second operand, and
the result is indicated in the condition code. The operands
are treated as 32-bit signed binary integers. The first operand
is in bit positions 0-31 of general register R1; bit positions
32-63 of the register are ignored. For COMPARE HIGH
(CHHR OpCode), the second operand is in bit positions 0-31
of general register R2; bit positions 32-63 of the register are
ignored. For COMPARE HIGH (CHLR OpCode), the sec-
ond operand is in bit positions 32-63 of general register R2;
bit positions 0-31 of the register are ignored. The displace-
ment for CHF is treated as a 20-bitsigned binary integer.
Resulting Condition Code:

0 Operands equal

1 First operand low

2 First operand high
3.

Program Exceptions:

Access (operand 2 of CHF only)

Operation (if the high-word facility is not installed)
Compare Logical (RRE, RXY Format), Compare Logical
Immediate High (RIL Format)

When the instruction is executed by the computer system,
the first operand is compared with the second operand, and
the result is indicated in the condition code. The operands
are treated as 32-bit unsigned binary integers. The first
operand is in bit positions 0-31 of general register R1; bit
positions 32-63 of the register are ignored. For COMPARE
LOGICAL HIGH (CLHHR OpCode), the second operand is
in bit positions 0-31 of general register R2; bit positions
32-63 of the register are ignored. For COMPARE LOGI-
CAL HIGH (CLHLR OpCode), the second operand is in bit
positions 32-63 of general register R2; bit positions 0-31 of
the register are ignored. The displacement for CLHF is
treated as a 20-bitsigned binary integer.

Resulting Condition Code:
0 Operands equal

1 First operand low

2 First operand high
3.

Program Exceptions:

Access (operand 2 of CLHF only)

Operation (if the high-word facility is not installed)
Load Byte High (RXY Format)

When the instruction is executed by the computer system,
the second operand is sign extended and placed at the
first-operand location, The second operand is one byte in
length and is treated as an eight-bit signed binary integer.
The first operand is treated as a 32-bit signed binary integer
in bits 0-31 of general register R1; bits 32-63 of the register
are unchanged. The displacement is treated as a 20-bit
signed binary integer.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2)

Operation (if the high-word facility is not installed)
Load Halfword High (RXY Format)

When the instruction is executed by the computer system,
the second operand is sign extended and placed at the
first-operand location. The second operand is two bytes in
length and is treated as an 16-bit signed binary integer. The

US 9,459,872 B2

35

first operand is treated as a 32-bit signed. binary integer in
bits 0-31 of general register R1; bits 32-63 of the register are
unchanged. The displacement is treated as a 20-bit signed
binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)

Operation (if the high-word facility is not installed)
Load High (RXY Format)

When the instruction is executed by the computer system,
the second operand is placed unchanged at the first operand
location. The second operand is 32 bits, and the first operand
is in bits 0-31 of general register R1; bits 32-63 of the
register are unchanged. The displacement is treated as a
20-bit signed binary integer.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2)

Operation (if the high-word facility is not installed)
Load Logical Character High (RXY Format)

When the instruction is executed by the computer system,
the one-byte second operand is placed in bit positions 24-31
of general register R1, and zeros are placed in bit positions
0-23 of general register R1; bit positions 32-63 of general
register R1 are unchanged. The displacement is treated as a
20-bit signed binary integer.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2)

Operation (if the high-word facility is not installed)
Load Logical Halfword High (RXY Format)

When the instruction is executed by the computer system,
the two-byte second operand is placed in bit positions 16-31
of general register R1, and zeros are placed in bit positions
0-15 of general register R1; bit positions 32-63 of general
register R1 are unchanged. The displacement is treated as a
20-bit signed binary integer.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2)

Operation (if the high-word facility is not installed)
Rotate Then Insert Selected Bits High (RIE Format), Rotate
Then Insert Selected Bits Low (RIE Format)

When the instruction is executed by the computer system,
the 64-bit second operand is rotated left by the number of
bits specified in the fifth operand. Each bit shifted out of the
leftmost bit position of the operand reenters in the rightmost
bit position of the operand. The selected bits of the rotated
second operand replace the contents of the corresponding bit
positions of the first operand. For ROTATE THEN INSERT
SELECTED BITS HIGH, the first operand is in bits 0-31 of
general register Rl,and bits 32-63 of the register are
unchanged. For ROTATE THEN INSERT SELECTED
BITS LOW, the first operand is in bits 32-63 of general
register RE and bits 0-31 of the register are unchanged. The
second operand remains unchanged in general register R2.
For ROTATE THEN INSERT SELECTED BITS HIGH, bits
3-7 of the I3 and 14 fields (bits 19-23 and 27-31 of the
instruction, respectively), with a binary zero appended on
the left of each, form six-bit unsigned binary integers
specifying the starting and ending bit positions (inclusive) of
the selected range of bits in the first operand and in the
second operand after rotation. When the ending bit position
is less than the starting bit position, the range of selected bits
wraps around from bit 31 to bit 0. Thus, the starting and
ending bit positions of the selected range of bits are always
between 0 and 31. For ROTATE THEN INSERT

15

20

25

30

35

40

45

50

55

60

65

36

SELECTED BITS LOW, bits 3-7 of the I3 and 14 fields, with

a binary one appended on the left of each, form six-bit

unsigned binary integers specifying the starting and ending

bit positions (inclusive) of the selected range of bits in the
first operand and in the second operand after rotation. When
the ending bit position is less than the starting bit position,

the range of selected bits wraps around from bit 63 to bit 32.

Thus, the starting and ending bit positions of the selected

range of bits are always between 32 and 63. Bits 2-7 of the

15 field (bits 34-39 of the instruction) contain an unsigned

binary integer specifying the number of bits that the second

operand is rotated to the left. Bit 0 of the 14 field (bit 24 of

the instruction) contains the zero-remaining-bits control (7).

The Z bit control show the remaining bits of the first operand

are set(that is, those bits, if any, that are outside of the

specified range). When the Z bit is zero, the remaining bits
of'the first operand are unchanged. When the Z bit is one, the
remaining bits of the first operand are set to zeros. The
immediate fields just described are as follows: Bits 0-2 of the

13 field and bits 1-2 of the 14 field (bits 10-19 and 25-20 of

the instruction) are reserved and should contain zeros;

otherwise, the program may not operate compatibly in the
future. Bits 0-1 of the IS field (bits 32-33 of the instruction)
are ignored.

Condition Code: The code remains unchanged

Program Exceptions:

Operation (if the high-word facility is not installed)

Programming Notes:

1. Although the bits 2-7 of the I5 field are defined to contain
an unsigned binary integer specifying the number of bits
that the second operand is rotated to the left, a negative
value may be coded which effectively specifies a rotate-
right amount.

2. The first operand is always used in its un-rotated form.
When the R1 and R2 fields designate the same register,
the value contained in the register is first rotated, and then
the selected bits of the rotated value are inserted into the
corresponding bits of the un-rotated register contents.

3. In the assembler syntax, the IS operand containing the
rotate amount is considered to be optional. When the IS5
field is not coded, a rotate amount of zero is implied.

4. The 14 field contains both the zero-remaining-bits control
(in bit 0) and the ending bit position value (in bits 2-7).
For example, to insert bits 40-43 of register 7 into the
corresponding bits of register 5 (no rotation) and zero the
remaining bits in the right half of register 5, the program-
mer might code: The X‘80° represents the zero-remain-
ing-bits control which is added to the ending-bit position
to form the 14 field. The high-level assembler (HLASM)
provides alternative mnemonics for the zero-remaining
bits versions of RISBHG and RISBLG in the form of
RISBHGZ and RISBLHZ, respectively. The “Z” suffix to
the mnemonic indicates that the specified 14 field is ORed
with a value of X80’ when generating the object code. An
equivalent to the example shown above using the Z-suf-
fixed mnemonic is as follows:

5. On some models, improved performance of RISBHG and
RISBLG may be realized by setting the zero-remaining-
bits control to one (or using the Z mnemonic suffix).

6. Unlike ROTATE THEN INSERT SELECTEDBITS
which sets the condition code, ROTATE THEN INSERT
SELECTED BITS HIGH and ROTATE THEN INSERT
SELECTED BITS LOW do not set the condition code.

Store Character High (RXY Format)

When the instruction is executed by the computer system,

Bits 24-31 of general register R1 are placed unchanged at the

US 9,459,872 B2

37

second-operand location. The second operand is one byte in
length. The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)

Operation (if the high-word facility is not installed)
Store Halfword High (RXY Format)

When the instruction is executed by the computer system.
Bits 16-31 of general register R1 are placed unchanged at the
second-operand location. The second operand is two bytes in
length. The displacement is treated as a 20-bit signed binary
integer.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (store, operand 2)

Operation (if the high-word facility is not installed)
Store High (RXY Format)

When the instruction is executed by the computer system,
the first operand is placed unchanged at the second operand
location. The first operand is in bits 0-31 of general register
R1, and the second operand is 32 bits in storage. The
displacement is treated as a 20-bit signed binary integer.
Condition Code: The code remains unchanged.

Program Exceptions:

Access (store, operand 2)

Operation (if the high-word facility is not installed)
Subtract High (RRF Format)

When the instruction is executed by the computer system,
the third operand is subtracted from the second operand, and
the difference is placed at the first operand location. The
operands and the difference are treated as 32-bit signed
binary integers, The first and second operands are in bits
0-31 of general registers R1 and R2, respectively; bits 32-63
of general register R1 are unchanged, and bits 32-63 of
general register R2 are ignored. For SHHHR OpCode, the
third operand is in bits 0-31 of general register R3; bits
32-63 of the register are ignored. For SHHLR OpCode, the
third operand is in bits 32-63 of general register R3; bits
0-31 of the register are ignored. When there is an overflow,
the result is obtained by allowing any carry into the sign-bit
position and ignoring any carry out of the sign-bit position,
and condition code 3 is set. If the fixed-point-overflow mask
is one, a program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow

1 Result less than zero: no overflow

2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

Fixed-point overflow

Operation (if the high-word facility is not installed)
Subtract Logical High (RRF Format)

When the instruction is executed by the computer system,
the third operand is subtracted from the second operand, and
the difference is placed at the first operand location. The
operands and the difference are treated as 32-bit unsigned
binary integers. The first and second operands are in bits
0-31 of general registers R1 and R2, respectively; bits 32-63
of general register R1 are unchanged, and bits 32-63 of
general register R2 are ignored. For SLHHHR OpCode, the
third operand is in bits 0-31 of general register R3; bits
32-63 of the register are ignored. For SLHHLR OpCode, the
third operand is in bits 32-63 of general register R3; bits
0-31 of the register are ignored.

10

15

20

25

30

35

40

45

50

55

60

65

38

Resulting Condition Code:
0---

1 Result not zero; borrow

2 Result zero; no borrow

3 Result not zero; no borrow
Program Exceptions:

Operation (if the high-word facility is not installed)

Referring to FIG. 15, an example General Purpose Reg-
ister (GPR) is shown having 16 GPRs (each GPR compris-
ing bits 32-63 in Small GPR mode and bits 0-63 in Large
GPR mode). The effective number of General Purpose
Registers (GPRs) available to instructions of a program may
be extended in a computer having a first number (16) of large
GPRs, each instruction comprising an opcode and one or
more GPR fields for specifying corresponding GPRs, each
large GPR consisting of a first portion (31-63) and a second
portion (0-31). Referring to FIG. 16, a computer in fetches
instructions for execution comprising instructions from
either First Set 701, a Second Set 702 or a Third Set 710. The
First Set only accessing a first portion of any GPR, the
Second Set accessing a second portion of any GPR, the
Third Set accessing the whole GPR, including the first
portion and the second portion. When 703 the computer is in
a small GPR mode, for example, and is executing instruc-
tions of the first set of instructions 707 for accessing first
portions. the execution comprising 708 generating memory
addresses for accessing memory operands based on said
small GPRs or accessing small GPR operands, wherein each
of said small GPRs consists of said first portion 707, when
703 the computer is in a small GOR mode, when 705 the
computer is executing High-Word instructions, executing
instructions 706 of a second set of instructions, the second
set of instructions for accessing instruction specified second
portions, wherein 708 the execution comprise generating
memory addresses for accessing memory operands based on
said small GPRs or accessing small GPR operands, wherein
said small GPR consists of said instruction specified second
portion. When 704 the computer is in a large GPR mode
wherein each large GPR consists of the first portion and the
second portion, the computer executes instructions of the
third set of instructions, the execution comprising generating
memory addresses for accessing memory operands based on
said large GPRs or accessing large GPR operands, wherein
each of said large GPR consists of said first portion and said
second portion.

Responsive to the computer being in a small GPR mode
the computer may generate 709 an operation exception
responsive to executing instructions of the second set of
instructions.

Referring to FIG. 17, the execution of the instruction of
the second instruction set may perform 751 a corresponding
opcode defined function based on two operands, and storing
the result, the corresponding opcode defined function con-
sisting of an ADD of two operands function, a COMPARE
of two operands function or an OR of two operands function
752.

The execution of the instruction of the second instruction
set may perform a corresponding opcode defined function
based on two operands, and storing the result, the corre-
sponding opcode defined function consists of a LOAD and
operand from memory function or a STORE an operand to
memory function 753.

The execution of the instruction of the second instruction
set may perform a corresponding opcode defined function
based on two operands, and storing the result, the corre-
sponding opcode defined function is a ROTATE THEN
INSERT SELECTED BITS function comprising rotating a

US 9,459,872 B2

39

source operand by an instruction specified amount, then
inserting a selected portion of the rotated source operand in
a selected portion of a target operand 704.

While the preferred embodiments have been illustrated
and described herein, it is to be understood that the embodi-
ments are not limited to the precise construction herein
disclosed, and the right is reserved to all changes and
modifications coming within the scope of the invention as
defined in the appended claims.

What is claimed is:

1. A computer program product for providing access to
registers available to program instructions of a program in a
computer having a plurality of registers, each of said plu-
rality of registers comprising a high order portion and a low
order portion, each of said program instructions comprising
an opcode specifying an operation, each of said program
instructions comprising a register field for selecting any of
said plurality of registers, the register field of a program
instruction specifying a register of the plurality of registers
for holding a corresponding register operand, the computer
program product comprising a non-transitory tangible stor-
age medium readable by a processing circuit and storing
program product instructions for execution by the process-
ing circuit for performing a method comprising:

executing, by the processing circuit, said program instruc-

tions, the executing comprising:
based on an instruction being an instruction of a first
subset of said program instructions, wherein the first
subset of said program instructions is configured to
permit the register field to only access the high order
portion of said plurality of registers, accessing, by the
processing circuit, a register operand consisting of only
the high order portion of a corresponding register; and

based on an instruction being one of a second subset of
said program instructions, wherein the second subset of
said program instructions is configured to permit the
register field to only access the low order portion of
said registers, accessing, by the processing circuit, a
register operand consisting of only the low order por-
tion of the corresponding register;
wherein, except for the register operand portion being
accessed, each instruction of the first subset of said
program instructions performs an identical function as
a corresponding instruction of the second subset; and

wherein main storage addresses are entirely from the low
order portion of a register in a first addressing mode and
are formed from a combination of the high order
portion and the low order portion of a register in a
second addressing mode, the method further compris-
ing:

based on determining that a high-word facility is installed,

permitting execution of instructions of said first subset
of instructions; and

based on determining that the high-word facility is not

installed, blocking execution of instruction of said first
subset of instructions.

2. The computer program product according to claim 1,
wherein each of said plurality of registers comprises 64 bits
and the high order portion consists of 32 high order bits of
the 64 bits and the low order portion consists of 32 low order
bits of the 64 bits, wherein the instruction of the second
subset of said instructions accesses the register operand
consisting of only the low order portion.

3. The computer program product according to claim 1,
wherein the accessing the register operand consisting of only
the high order portion of the corresponding register com-

10

15

20

25

30

35

40

45

50

55

60

65

40

prises fetching the register operand entirely from the high
order portion of the corresponding register.

4. The computer program product according to claim 1,
wherein the accessing the register operand consisting of only
the high order portion of the corresponding register com-
prises storing the register operand entirely in the high order
portion of the corresponding register.

5. The computer program product according to 1, wherein
the execution of the instruction of the first subset of said
program instructions comprises performing a corresponding
opcode defined function based on two operands, and storing
a result, wherein the corresponding opcode defined function
consists of any one of an ADD of two operands function or
a COMPARE of two operands function.

6. The computer program product according to claim 1,
wherein the execution of the instruction of the first subset of
said program instructions comprises performing a corre-
sponding opcode defined function based on two operands,
and storing a result, wherein the corresponding opcode
defined function consists of any one of a LOAD of an
operand from memory function or a STORE of an operand
to memory function.

7. The computer program product according to claim 1,
wherein the execution of the instruction of the first subset of
said program instructions comprises performing a corre-
sponding opcode defined function based on two operands,
and storing a result, wherein the corresponding opcode
defined function is a ROTATE THEN INSERT SELECTED
BITS function comprising:

rotating a source operand by an instruction specified
amount; and

inserting a selected portion of the rotated source operand
in a selected portion of a target operand.

8. A computer system for providing access to registers
available to program instructions of a program in a computer
having a plurality of registers, each of said plurality of
registers comprising a high order portion and a low order
portion, each of said program instructions comprising an
opcode specifying an operation, each of said program
instructions comprising a register field for selecting any of
said plurality of registers, the register field of a program
instruction specifying a register of the plurality of registers
for holding a corresponding register operand, the computer
system comprising:

a memory;

a processor in communication with the memory, the
processor comprising an instruction fetching element
for fetching instructions from memory and one or more
execution elements for executing fetched instructions,
wherein the computer system is configured to perform
a method comprising:

executing, by a processing circuit, said program instruc-
tions, the executing comprising:

based on an instruction being an instruction of a first
subset of said program instructions, wherein the first
subset of said program instructions is configured to
permit the register field to only access the high order
portion of said plurality of registers, accessing, by the
processing circuit, a register operand consisting of only
the high order portion of a corresponding register; and

based on an instruction being one of a second subset of
said program instructions, wherein the second subset of
said program instructions is configured to permit the
register field to only access the low order portion of
said registers, accessing, by the processing circuit, a
register operand consisting of only the low order por-
tion of the corresponding register;

US 9,459,872 B2

41

wherein, except for the register operand portion being
accessed, each instruction of the first subset of said
program instructions performs an identical function as
a corresponding instruction of the second subset; and

wherein main storage addresses are formed entirely from
the low order portion of a register in a first addressing
mode and are formed from a combination of the high
order portion and the low order portion of a register in
a second addressing mode, the method further com-
prising:

based on determining that a high-word facility is installed,

permitting execution of instructions of said first subset
of instructions; and

based on determining that the high-word facility is not

installed, blocking execution of instructions of said first
subset of instructions.

9. The computer system according to claim 8, wherein
each of said plurality of registers comprises 64 bits and the
high order portion consists of 32 high order bits of the 64 bits
and the low order portion consists of 32 low order bits of the
64 bits, wherein the instruction of the second subset of said
instructions accesses the register operand consisting of only
the low order portion.

10. The computer system according to claim 8, wherein
the accessing the register operand consisting of only the high
order portion of the corresponding register comprises fetch-
ing the register operand entirely from the high order portion
of the corresponding register.

11. The computer system according to claim 8, wherein
the accessing the register operand consisting of only the high
order portion of the corresponding register comprises storing
the register operand entirely in the high order portion of the
corresponding register.

12. The computer system according to claim 8, wherein
the execution of the instruction of the first subset comprises
performing a corresponding opcode defined function based
on two operands, and storing a result, wherein the corre-
sponding opcode defined function consists of any one of an
ADD of two operands function or a COMPARE of two
operands function.

13. The computer system according to claim 8, wherein
the execution of the instruction of the first subset of said
program instructions comprises performing a corresponding
opcode defined function based on two operands, and storing
a result, wherein the corresponding opcode defined function
consists of any one of a LOAD of an operand from memory
function or a STORE of an operand to memory function.

14. A computer implemented method for providing access
to extending an effective number of registers available to
program instructions of a program in a computer having a
plurality of registers, each of said plurality of registers
comprising a high order portion and a low order portion,
each of said program instructions comprising an opcode
specifying an operation, each of said program instructions
comprising a register field for selecting any of said plurality
of registers, the register field of a program instruction
specifying a register of the plurality of registers for holding
a corresponding register operand, the method comprising:

executing, by a processing circuit, said program instruc-

tions, the executing comprising:

based on an instruction being an instruction of a first

subset of said program instructions, wherein the first

10

15

20

25

30

35

40

45

50

55

60

42

subset of said program instructions is configured to
permit the register field to only access the high order
portion of said plurality of registers, accessing, by the
processing circuit, a register operand consisting of only
the high order portion of a corresponding register; and

based on an instruction being one of a second subset of
said program instructions, wherein the second subset of
said program instructions is configured to permit the
register field to only access the low order portion of
said registers, accessing, by the processing circuit, a
register operand consisting of only the low order por-
tion of the corresponding register;
wherein, except for the register operand portion being
accessed, each instruction of the first subset of said
program instructions performs an identical function as
a corresponding instruction of the second subset; and

wherein main storage addresses are formed entirely from
the low order portion of a register in a first addressing
mode and are formed from a combination of the high
order portion and the low order portion of a register in
a second addressing mode, the method further com-
prising:

based on determining that a high-word facility is installed,

permitting execution of instructions of said first subset
of instructions; and

based on determining that the high-word facility is not

installed, blocking execution of instructions of said first
subset of instructions.

15. The computer implemented method according to
claim 14, wherein each of said plurality of registers com-
prises 64 bits and the high order portion consists of 32 high
order bits of the 64 bits and the low order portion consists
of 32 low order bits of the 64 bits, wherein the instruction
of'the second subset of said instructions accesses the register
operand consisting of only the low order portion.

16. The computer implemented method according to
claim 14, wherein the accessing the register operand con-
sisting of only the high order portion of the corresponding
register comprises fetching the register operand entirely
from the high order portion of the corresponding register.

17. The computer implemented method according to
claim 14, wherein the accessing the register operand con-
sisting of only the high order portion of the corresponding
register comprises storing the register operand entirely in the
high order portion of the corresponding register.

18. The computer implemented method according to
claim 14, wherein the execution of the instruction of the first
subset of said program instructions comprises performing a
corresponding opcode defined function based on two oper-
ands, and storing a result, wherein the corresponding opcode
defined function consists of any one of an ADD of two
operands function or a COMPARE of two operands func-
tion.

19. The computer implemented method according to
claim 14, wherein the execution of the instruction of the first
subset of said program instructions comprises performing a
corresponding opcode defined function based on two oper-
ands, and storing a result, wherein the corresponding opcode
defined function consists of any one of a LOAD of an
operand from memory function or a STORE of an operand
to memory function.

